On classification of groups generated by 3-state automata over a 2-letter alphabet

Ievgen Bondarenko, Rostislav Grigorchuk, Rostyslav Kravchenko, Yevgen Muntyan, Volodymyr Nekrashevych, Dmytro Savchuk and Zoran Šunić

Dedicated to V. V. Kirichenko on his 65th birthday and V. I. Sushchansky on his 60th birthday

Abstract. We show that the class of groups generated by 3-state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients by level stabilizers (congruence quotients), and hystogram of the spectrum of the adjacency operator of the Schreier graph of the action on level 9. In most cases we provide more information, such as whether the group is contracting, self-replicating, or (weakly) branch group, and exhibit elements of infinite order (we show that no group in the class is an infinite torsion group). A GAP package, written by Muntyan and Savchuk, was used to perform some necessary calculations. For some of the examples, we establish that they are (virtually) iterated monodromy groups of post-critically finite rational functions, in which cases we describe the functions and the limit spaces. There are exactly 6 finite groups in the class (of order no greater than 16), two free abelian groups (of rank 1 and 2), and only one free nonabelian group (of rank 3). The other examples in the class range from familiar (some virtually abelian groups, lamplighter group, Baumslag-Solitar groups $BS(1,\pm 3)$, and a free product $C_2 * C_2 * C_2$) to enticing (Basilica group and a few other iterated monodromy groups).

All authors were partially supported by at least one of the NSF grants DMS-308985, DMS-456185, DMS-600975, and DMS-605019

1. Introduction

Automaton groups were formally introduced in the beginning of 1960's [Glu61, Hoř63] but it took a while to realize their importance, utility, and, at the same time, complexity. Among the publications from the first decade of the study of automaton groups let us distinguish [Zar64, Zar65] and the book [GP72].

The first substantial results came only in the 1970's and in the beginning of the 1980's when it was shown in [Ale72, Sus79, Gri80, GS83b] that automaton groups provide examples of finitely generated infinite torsion groups, thus making a contribution to one of the most famous problems in algebra — the General Burnside Problem (more information on all three versions of the Burnside problem can be found in [Adi79, Gol68, Gup89, Kos90, Zel91, GL02]). The methods used to study the properties of the examples from [Ale72, Sus79, Gri80] are very different. The methods used in [Ale72] are typical for the theory of finite automata (in fact the provided proof was incorrect; the first correct proof appears in [Mer83] as a combination of the results from [Gri80] and [Mer83], as well as in the third edition of the book [KM82] and in [KAP85]). The exposition in [Sus79] is based on Kalujnin's tableaux coming from his theory of iterated wreath products of cyclic groups of prime order p. The approach in [Gri80] is based on the ideas of selfsimilarity and contraction. These ideas are apparent both in the proof of the infiniteness and the torsion property of the group. The self-similarity is apparent from the fact that the set of all states of the automaton is used as a generating set for the group (now it is common to call such groups self-similar). The contraction property here means that the length of the elements contracts by a factor bounded away from 1 when one passes to sections. A principal tool introduced in the beginning of the 1980's was the language of actions on rooted trees suggested by Gupta and Sidki in [GS83b], which helped tremendously in bringing geometric insight to the subject.

A new indication of the importance of automaton groups came when it was shown that some of them provided the first examples of groups of intermediate growth [Gri83, Gri84, Gri85]. This not only answered the question of J.Milnor [Mil68] about existence of such groups, but also answered a number of other questions in and around group theory, including M. Day's problem [Day57] on existence of amenable but not elementary amenable groups. Basically, even to this day, all known examples of groups of intermediate growth and non-elementary amenable groups are based on automaton groups.

Investigations in the last two decades [Gri84, Gri85, GS83b, GS83a,

Lys85, Neu86, Sid87a, Sid87b, Gri89, Roz93, Gri98, Gri99, Gri00, BG00a, BG00b, GZ01, Nek05, GS06 show that many automaton groups possess numerous interesting, and sometimes unusual, properties. This includes just infiniteness (the groups constructed in [Gri84, Gri85] as well as in [GS83a] answer a question from [CM82] on new examples of infinite groups with finite quotients), finiteness of width, or more generally polynomial growth of the dimension of the successive quotients in the lower central series [BG00b] (answering a question of E. Zelmanov on classification of groups of finite width), branch properties [Gri84, Neu86, Gri00] (answering some questions of S. Pride and M. Edjvet [Pri80, EP84]), finiteness of the index of maximal subgroups and presence or absence of the congruence property [Per00, Per02] (related to topics in pro-finite groups), existence of groups with exponential but not uniformly exponential growth [Wil04b, Wil04a, Bar03, Nek07b] (providing an answer to a question of M. Gromov), subgroup separability and conjugacy separability [GW00], further examples of amenable groups but not amenable (or even sub-exponentially amenable) groups [GZ02a, BV05, GNŠ06a], amenability of groups generated by bounded automata [BKN], and so on. The word problem can be solved in contracting self-similar groups by using an extremely effective branch algorithm [Gri84, Sav03]. The conjugacy problem can also be solved in many cases [WZ97, Roz98, Leo98, GW00] (in fact we do not know of an example of an automaton group with unsolvable conjugacy problem). In some instances, it is even known that the membership problem is solvable [GW03].

In addition to the formulation of many algebraic properties of groups generated by finite automata, a number of links and applications were discovered during the last decade. This includes asymptotic and spectral properties of the Cayley graphs and Schreier graphs associated to the action on the rooted tree with respect to the set of generators given by the set of states of the automaton. For instance, it is shown in $[G\dot{Z}01]$ that the discrete Laplacian on the Cayley graph of the Lamplighter group $\mathbb{Z} \ltimes (\mathbb{Z}/2\mathbb{Z})^{\mathbb{Z}}$ has pure point spectrum. This fact was used to answer a question of M. Atiyah on L^2 -Betti numbers of closed manifolds $[GLS\dot{Z}00]$. The methods developed in the study of the spectral properties of Schreier graphs of self-similar groups can be used to construct Laplacians on fractal sets and to study their spectral properties (see [GN07, NT08].

A new and fruitful direction, bringing further applications of self-similar groups, was established by the introduction of the notions of iterated monodromy groups and limit spaces by V. Nekrashevych. The theory established a link between contracting self-similar groups and the geometry of Julia sets of expanding maps. An example of an application of self-similar groups to holomorphic dynamics is given by the solution

(by L. Bartholdi and V. Nekrashevych in [BN06]) of the "twisted rabbit" problem of J. Hubbard. The book [Nek05] provides a comprehensive introduction to this theory.

In many situations automaton groups serve as renorm groups. For instance this happens in the study of classical fractals, in the study of the behavior of dynamical systems [Oli98], and in combinatorics — for example in Hanoi Towers games on k pegs, $k \geq 3$, as observed by Z. Šunić (see [GŠ06]).

There is interest of computer scientists and logicians in automaton groups, since they may be relevant in the solution of important complexity problems (see [RS] for ideas in this direction). Self-similar groups of intermediate growth are mentioned by Wolfram in [Wol02] as examples of "multiway systems" with complex behavior.

Among the major problems in many areas of mathematics are the classification problems. If the objects are given combinatorially then it is naturally to try to classify them first by complexity and then within each complexity class.

A natural complexity parameter in our situation is the pair (m, n) where m is the number of states of the automaton generating the group and n is the cardinality of the alphabet.

There are 64 invertible 2-state automata acting on a 2-letter alphabet, but there are only six non-isomorphic (2,2)-automaton groups, namely, the trivial group, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, \mathbb{Z} , the infinite dihedral group D_{∞} , and the lamplighter group $\mathbb{Z}/2\mathbb{Z}$ [GNS00, GZ01] (more details are given in Theorem 7 below). A classification of semigroups generated by 2-state automata (not necessary invertible) over a 2-letter alphabet is provided by I. Reznikov and V. Sushchanskiř [RS02a]. Some examples from this class, including an automaton generating a semigroup of intermediate growth, were studied in the subsequent papers [RS02c, RS02b, BRS06].

It is not known how many pairwise non-isomorphic groups exists for any class (m, n) when either m > 2 or n > 2. Unfortunately, the number of automata that has to be treated grows super-exponentially with either of the two arguments (there are $m^{mn}(n!)^m$ invertible (m, n)-automata).

Nevertheless, a reasonable task is to consider the problem of classification for small values of m and n and try to classify the (3,2)-automaton groups and (2,3)-automaton groups.

Our research group (with some contribution by Y. Vorobets and M. Vorobets) has been working on the problem of classification of (3, 2)-automaton groups for the last four yeas and some of the obtained results are presented in this article. Our research goals moved in three main directions:

1. Search for new interesting groups and an attempt to use them to

solve known problems. An example of such a group is the Basilica group (see automaton [852]). It is the first example of an amenable group (shown in [BV05]) that is not sub-exponentially amenable group (shown in [GŻ02a]).

- 2. Recognition of already known groups as self-similar groups, and use of the self-similar structure in finding new results and applications for such groups. As examples we can mention the free group of rank 3 (see automaton [2240]), the free product of three copies of $\mathbb{Z}/2\mathbb{Z}$ (see automaton [846]), Baumslag-Solitar groups $BS(1,\pm 3)$ (see automata [870] and [2294]), the Klein bottle group (see automaton [2212]), and the group of orientation preserving automorphisms of the 2-dimensional integer lattice (see automaton [2229]).
- 3. Understanding of typical phenomena that occur for various classes of automaton groups, formulation and proofs of reasonable conjectures about the structure of self-similar groups.

The results on the class of groups generated by (3, 2)-automata proven in this article are the following.

Theorem 1. There are at most 122 non-isomorphic groups generated by (3,2)-automata.

The numbers in brackets in the next two theorems are references to the numbers of the corresponding automata (more on this encoding will be said later). Here and thereafter, C_n denotes the cyclic group of order n.

Theorem 2. There are 6 finite groups in the class: the trivial group $\{1\}$ [1], C_2 [1090], $C_2 \times C_2$ [730], D_4 [847], $C_2 \times C_2 \times C_2$ [802] and $D_4 \times C_2$ [748].

Theorem 3. There are 6 abelian groups in the class: the trivial group $\{1\}$ [1], C_2 [1090], $C_2 \times C_2$ [730], $C_2 \times C_2 \times C_2$ [802], \mathbb{Z} [731] and \mathbb{Z}^2 [771].

Theorem 4. The only nonabelian free group in the class is the free group of rank 3 generated by the Aleshin-Vorobets-Vorobets automaton [2240].

Theorem 5. There are no infinite torsion groups in the class.

The short list of general results does not give full justice to the work that has been done. Namely, in most individual cases we have provided detailed information for the group in question.

More work and, likely, some new invariants are required to further distinguish the 122 groups that are listed in this paper as potentially non-isomorphic. In some cases one could try to use the rigidity of actions on rooted trees (see [LN02]), since in many cases it is easier to distinguish actions than groups. In the contracting case one could use, for instance, the geometry of the Schreier graphs and limit spaces to distinguish the actions.

Next natural step would be to consider the case of (2,3)-automaton groups or 2-generated self-similar groups of binary tree automorphisms defined by recursions in which every section is either trivial, a generator, or an inverse of a generator. The cases (4,2) and (5,2) also seem to be attractive, as there are many remarkable groups in these classes.

Another possible direction is to study more carefully only certain classes of automata (such as the classical linear automata, bounded and polynomially growing automata in the sense of Sidki [Sid00], etc.) and the properties of the corresponding automaton groups.

Many computations used in our work were performed by the package AutomGrp for GAP system, developed by Y. Muntyan and D. Savchuk [MS08]. The package is not specific to (3,2)-automaton groups (in fact, many functions are implemented also for groups of tree automorphisms that are not necessarily generated by automata).

2. Regular rooted trees, automorphisms, and self-similarity

Let X be an alphabet on d ($d \ge 2$) letters. Most often we set $X = \{0, 1, \ldots, d-1\}$. The set of finite words over X, denote by X^* , has the structure of a regular rooted d-ary tree, which we also denote by X^* . The empty word \emptyset is the root of the tree and every vertex v has d children, namely the words vx, for x in X. The words of length n constitute level n in the tree.

The group of tree automorphisms of X^* is denoted by $\operatorname{Aut}(X^*)$. Tree automorphisms are precisely the permutations of the vertices that fix the root and preserve the levels of the tree. Every automorphism f of X^* can be decomposed as

$$f = \alpha_f(f_0, \dots, f_{d-1}) \tag{1}$$

where f_x , for x in X, are automorphisms of X^* and α_f is a permutation of the set X. The permutation α_f is called the *root permutation* of f and the automorphisms f_x (denoted also by $f|_x$), x in X, are called sections of f. The permutation α_f describes the action of f on the first letter of every word, while the automorphism f_x , for x in X, describes the action of f on the tail of the words in the subtree xX^* , consisting of the words

in X^* that start with x. Thus the equality (1) describes the action of f through decomposition into two steps. In the first step the d-tuple (f_0, \ldots, f_{d-1}) acts on the d subtrees hanging below the root, and then the permutation α_f , permutes these d subtrees. Thus we have

$$f(xw) = \alpha_f(x)f_x(w), \tag{2}$$

for x in X and w in X^* . Second level sections of f are defined as the sections of the sections of f, i.e., $f_{xy} = (f_x)_y$, for $x, y \in X$, and more generally, for a word u in X^* and a letter x in X the section of f at ux is defined as $f_{ux} = (f_u)_x$, while the section of f at the root is f itself.

The group $Aut(X^*)$ decomposes algebraically as

$$\operatorname{Aut}(X^*) = \operatorname{\mathsf{Sym}}(X) \ltimes \operatorname{Aut}(X^*)^X = \operatorname{\mathsf{Sym}}(X) \wr \operatorname{Aut}(X^*), \tag{3}$$

where \wr is the *permutational wreath product* in which the active group $\mathsf{Sym}(X)$ permutes the coordinates of $\mathsf{Aut}(X^*)^X = (\mathsf{Aut}(X^*), \dots, \mathsf{Aut}(X^*))$. For arbitrary automorphisms f and g in $\mathsf{Aut}(X^*)$ we have

$$\alpha_f(f_0, \dots, f_{d-1})\alpha_g(g_0, \dots, g_{d-1}) = \alpha_f\alpha_g(f_{g(0)}g_0, \dots, f_{g(d-1)}g_{d-1}).$$

For future use we note the following formula regarding the sections of a composition of tree automorphisms. For tree automorphisms f and g and a vertex u in X^* ,

$$(fg)_u = f_{g(u)}g_u. (4)$$

The group of tree automorphisms $\operatorname{Aut}(X^*)$ is a pro-finite group. Namely, $\operatorname{Aut}(X^*)$ has the structure of an infinitely iterated wreath product

$$\operatorname{Aut}(X^*) = \operatorname{\mathsf{Sym}}(X) \wr (\operatorname{\mathsf{Sym}}(X) \wr (\operatorname{\mathsf{Sym}}(X) \wr \dots))$$

of the finite group $\operatorname{Sym}(X^*)$ (this follows from (3)). This product is the inverse limit of the sequence of finitely iterated wreath products of the form $\operatorname{Sym}(X) \wr (\operatorname{Sym}(X) \wr (\operatorname{Sym}(X) \wr \cdots \wr \operatorname{Sym}(X)))$. Every subgroup of $\operatorname{Aut}(X^*)$ is residually finite. A canonical sequence of normal subgroups of finite index intersecting trivially is the sequence of level stabilizers. The n-th level stabilizer of a group G of tree automorphisms is the subgroup $\operatorname{Stab}_G(n)$ of $\operatorname{Aut}(X^*)$ that consists of all tree automorphisms in G that fix the vertices in the tree X^* up to and including level n.

The boundary of the tree X^* is the set X^{ω} of right infinite words over X (infinite geodesic rays in X^* connecting the root to "infinity"). The boundary has a natural structure of a metric space in which two infinite words are close if they agree on long finite prefixes. More precisely, for

two distinct rays ξ and ζ , define the distance to be $d(\xi,\zeta)=1/2^{|\xi\wedge\zeta|}$, where $|\xi\wedge\zeta|$ denotes the length of the longest common prefix $\xi\wedge\zeta$ of ξ and ζ . The induced topology on X^ω is the Tychonoff product topology (with X discrete), and X^ω is a Cantor set. The group of isometries $\mathrm{Isom}(X^\omega)$ and the group of tree automorphisms $\mathrm{Aut}(X^*)$ are canonically isomorphic. Namely, the action of the automorphism group $\mathrm{Aut}(X^*)$ can be extended to an isometric action on X^ω , simply by declaring that (1) and (2) are valid for right infinite words.

We now turn to the concept of self-similarity. The tree X^* is a highly self-similar object (the subtree uX^* consisting of words with prefix u is canonically isomorphic to the whole tree) and we are interested in groups of tree automorphisms in which this self-similarity structure is reflected.

Definition 1. A group G of tree automorphisms is *self-similar* if, every section of every automorphism in G is an element of G.

Equivalently, self-similarity can be expressed as follows. A group G of tree automorphisms is self-similar if, for every g in G and a letter x in X, there exists a letter y in X and an element h in G such that

$$g(xw) = yh(w),$$

for all words w over X.

Self-replicating groups constitute a special class of self-similar groups. Examples from this class are very common in applications. A self-similar group G is self-replicating if, for every vertex u in X^* , the homomorphism $\varphi_u : \operatorname{Stab}_G(u) \to G$ from the stabilizer of the vertex u in G to G, given by $\varphi(g) = g_u$, is surjective.

At the end of the section, let us mention the class of branch groups. Branch groups were introduced [Gri00] where it is shown that they constitute one of the three classes of just-infinite groups (infinite groups with no proper, infinite, homomorphic images). If a class of groups \mathcal{C} is closed under homomorphic images and if it contains infinite, finitely generated examples then it contains just-infinite examples (this is because every infinite, finitely generated group has a just-infinite image). Such examples are minimal infinite examples in \mathcal{C} . We note that, for example, the group of intermediate growth constructed in [Gri80] is a branch automaton group that is a just-infinite 2-group. i.e., it is an infinite, finitely generated, torsion group that has no proper infinite quotients. The Hanoi Towers group [GŠ07] is a branch group that is not just infinite [GNŠ06b]. The iterated monodromy group $IMG(z^2 + i)$ [GSŠ07] is a branch groups, while $\mathcal{B} = IMG(z^2 - 1)$ is not a branch group, but only weakly branch. More generally, it is shown in [BN07] that the iterated

monodromy groups of post-critically finite quadratic maps are branch groups in the pre-periodic case and weakly branch groups in the periodic case (the case refers to the type of post-critical behavior).

We now define regular (weakly) branch groups. A level transitive group $G \leq \operatorname{Aut}(X^*)$ of k-ary tree automorphisms is a regular branch group over K if K is a normal subgroup of finite index in G such that $K \times \cdots \times K$ is geometrically contained in K. By definition, the subgroup K has the property that $K \times \cdots \times K$ is geometrically contained in K, denoted by $K \times \cdots \times K \preceq K$, if

$$K \times \cdots \times K \le \psi(K \cap \operatorname{Stab}_G(1))$$

where ψ is the homomorphism $\psi: \operatorname{Stab}_G(1) \to \operatorname{Aut}(X^*) \times \cdots \times \operatorname{Aut}(X^*)$ given by $\psi(g) = (g_0, g_1, \dots, g_{k-1})$. If instead of asking for K to have finite index in G we only require that K is nontrivial, we say that G is regular weakly branch group over K. Note that if G is level transitive and K is normal in G, in order to show that G is regular (weakly) branch group over K, it is sufficient to show that $K \times 1 \times \cdots \times 1 \leq K$ (i.e. $K \times 1 \times \cdots \times 1 \leq \psi(K \cap \operatorname{Stab}_G(1))$). More on the class of branch group can be found in [Gri00] and [BGŠ03].

3. Automaton groups

The full group of tree automorphisms $Aut(X^*)$ is self-similar, since the section of every tree automorphism is just another tree automorphism. However, this group is rather large (uncountable). For various reasons, one may be interested in ways to define (construct) finitely generated self-similar groups. Automaton groups constitute a special class of finitely generated self-similar groups. We provide two ways of thinking about automaton groups. One is through finite wreath recursions and the other through finite automata.

Every finite system of recursive relations of the form

$$\begin{cases}
s^{(1)} = \alpha_1 \left(s_0^{(1)}, s_1^{(1)}, \dots, s_{d-1}^{(1)} \right), \\
\dots \\
s^{(k)} = \alpha_k \left(s_0^{(k)}, s_1^{(k)}, \dots, s_{d-1}^{(k)} \right),
\end{cases} (5)$$

where each symbol $s_j^{(i)}$, $i=1,\ldots,k,\,j=0,\ldots,d-1$, is a symbol in the set of symbols $\{s^{(1)},\ldots,s^{(k)}\}$ and α_1,\ldots,α_k are permutations in $\mathsf{Sym}(X)$, has a unique solution in $\mathsf{Aut}(X^*)$ (in the sense that the above recursive relations represent the decompositions of the tree automorphisms

 $s^{(1)}, \ldots, s^{(k)}$). Thus, the action of the automorphism defined by the symbol $s^{(i)}$ is given recursively by $s^{(i)}(xw) = \alpha_i(x)s_x^{(i)}(w)$.

The group G generated by the automorphisms $s^{(1)}, \ldots, s^{(k)}$ is a finitely generated self-similar group of automorphisms of X^* . This follows since sections of products are products of sections (see (4)) and all sections of the generators of G are generators of G.

When a self-similar group is defined by a system of the form (5), we say that it is defined by a *wreath recursion*. We switch now the point of view from wreath recursions to invertible automata.

Definition 2. A finite automaton A is a 4-tuple $A = (S, X, \pi, \tau)$ where S is a finite set of states, X is a finite alphabet of cardinality $d \geq 2$, $\pi: S \times X \to X$ is a map, called output map, and $\tau: S \times X \to S$ is a map, called transition map. If in addition, for each state s in S, the restriction $\pi_s: X \to X$ given by $\pi_s(x) = \pi(s, x)$ is a permutation in $\mathsf{Sym}(X)$, the automaton A is invertible.

In fact, we will be only concerned with finite invertible automata and, in the rest of the text, we will use the word automaton for such automata.

Each state s of the automaton \mathcal{A} defines a tree automorphism of X^* , which we also denote by s. By definition, the root permutation of the automorphism s (defined by the state s) is the permutation π_s and the section of s at x is $\tau(s, x)$. Therefore

$$s(xw) = \pi_s(x)\tau(s,x)(w) \tag{6}$$

for every state s in S, letter x in X and word w over X.

Definition 3. Given an automaton $\mathcal{A} = (S, X, \pi, \tau)$, the group of tree automorphisms generated by the states of \mathcal{A} is denoted by $G(\mathcal{A})$ and called the *automaton group* defined by \mathcal{A} .

The generating set S of the automaton group G(A) generated by the automaton $A = (S, X, \pi, \tau)$ is called the *standard* generating set of G(A) and plays a distinguished role.

Directed graphs provide convenient representation of automata. The vertices of the graph, called *Moore diagram* of the automaton $\mathcal{A} = (S, X, \pi, \tau)$, are the states in S. Each state s is labeled by the root permutation $\alpha_s = \pi_s$ and, for each pair $(s, x) \in S \times X$, an edge labeled by x connects s to $s_x = \tau(s, x)$. Several examples are presented in Figure 1. The states of the 5-state automaton in the left half of the figure generate the group \mathcal{G} of intermediate growth mentioned in the introduction (σ denotes the permutation exchanging 0 and 1, and 1 denotes the trivial vertex permutation). The top of the three 2-state automata on the

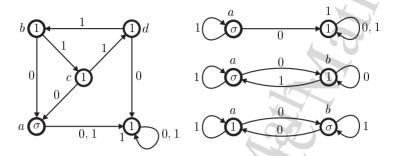


Figure 1: An automaton generating \mathcal{G} , the binary adding machine, and two Lamplighter automata

right in Figure 1 is the so called *binary adding machine*, which generates the infinite cyclic group \mathbb{Z} . The other two automata both generate the Lamplighter group $L_2 = \mathbb{Z} \wr \mathbb{Z}/2\mathbb{Z} = \mathbb{Z} \ltimes (\bigoplus \mathbb{Z}/2\mathbb{Z})^{\mathbb{Z}}$ (see [GNS00]).

The corresponding wreath recursions for the adding machine and for the two automata generating the Lamplighter group are given by

$$a = \sigma(1, a)$$
 $a = \sigma(b, a)$ $a = (b, a)$
 $1 = (1, 1)$ $b = (b, a),$ $b = \sigma(a, b)$ (7)

respectively.

The class of polynomially growing automata was introduced by Sidki in [Sid00]. Sidki proved in [Sid04] that no group generated by such an automaton contains free subgroups of rank 2. As we already indicated in the introduction, for the subclass of so called bounded automata the corresponding groups are amenable [BKN]. Recall that an automaton \mathcal{A} is called bounded if, for every state s of \mathcal{A} , the function $f_s(n)$ counting the number of active sections of s at level n is bounded (a state is active if its vertex permutation is nontrivial).

There are other classes of automata (and corresponding automaton groups) that deserve special attention. We end the section by mentioning several such classes.

The class of *linear automata* consists of automata in which both the set of states S and the alphabet X have a structure of a vector space (over a finite field) and both the output and the transition function are linear maps (see [GP72] and [Eil76]).

The class of bi-invertible automata consists of automata in which both the automaton and its dual are invertible. Some of the automata in our classification are bi-invertible, most notably the Aleshin-Vorobets-Vorobets automaton [2240] generating the free group F_3 of rank 3 and

the Bellaterra automaton [846] generating the free product $C_2 * C_2 * C_2$. In fact, both of these have even stronger property of being *fully invertible*. Namely, not only the automaton and its dual are invertible, but also the dual of the inverse automaton is invertible.

Another important class is the class of automata satisfying the *open* set condition. Every automaton in this class contains a trivial state (a state defining the trivial tree automorphism) and this state can be reached from any other state.

One may also study automata that are *strongly connected* (i.e. automata for which the corresponding Moore diagrams are strongly connected as directed graphs), automata in which no path contains more than one active state (such as the automaton defining \mathcal{G} in Figure 1), and so on.

4. Schreier graphs

Let G be a group generated by a finite set S and let G act on a set Y. We denote by $\Gamma = \Gamma(G, S, Y)$ the *Schreier graph* of the action of G on Y. The vertices of Γ are the elements of Y. For every pair (s, y) in $S \times Y$ an edge labeled by s connects y to s(y). An orbital Schreier graph of the action is the Schreier graph $\Gamma(G, S, y)$ of the action of G on the G-orbit of Y, for some Y in Y.

Let G be a group of tree automorphisms of X^* generated by a finite set S. The levels X^n , $n \geq 0$, are invariant under the action of G and we can consider the sequence of finite Schreier graphs $\Gamma_n(G,S) = \Gamma(G,S,X^n)$, $n \geq 0$. Let $\xi = x_1x_2x_3... \in X^{\omega}$ be an infinite ray. Then the pointed Schreier graphs $(\Gamma_n(G,S), x_1x_2...x_n)$ converge in the local topology (see [Gri84] or [GŻ99]) to the pointed orbital Schreier graph $(\Gamma(G,S,\xi),\xi)$.

Schreier graphs may be sometimes used to compute the spectrum of some operators related to the group. For a group of tree automorphisms G generated by a finite symmetric set S there is a natural unitary representation in the space of bounded linear operators $\mathcal{H} = B(L_2(X^{\omega}))$, given by $\pi_g(f)(x) = f(g^{-1}x)$ (the measure on the boundary X^{ω} is just the product measure associated to the uniform measure on X). Consider the spectrum of the operator

$$M = \frac{1}{|S|} \sum_{s \in S} \pi_s$$

corresponding to this unitary representation. The spectrum of M for a self-similar group G is approximated by the spectra of the finite dimensional operators induced by the action of G on the levels of the tree

(see [BG00a]. Denote by \mathcal{H}_n the subspace of $\mathcal{H} = B(L_2(X^{\omega}))$ spanned by the characteristic functions $f_v, v \in X^n$, of the cylindrical sets corresponding to the $|X|^n$ vertices on level n. The subspace \mathcal{H}_n is invariant under the action of G and $\mathcal{H}_n \subset \mathcal{H}_{n+1}$. Denote by $\pi_g^{(n)}$ the restriction of π_g on \mathcal{H}_n . Then, for $n \geq 0$, the operator

$$M_n = \frac{1}{|S|} \sum_{s \in S} \pi_s^{(n)}$$

is finite dimensional. Moreover,

$$M_n = \frac{1}{|S|} \sum_{s \in S} \pi_s^{(n)}$$
 breover,
$$sp(M) = \overline{\bigcup_{n \ge 0} sp(M_n)},$$

i.e., the spectra of the operators M_n converge to the spectrum of M.

The table of information provided in Section 8 includes, in each case, the histogram of the spectrum of the operator M_9 .

If P is the stabilizer of a point on the boundary X^{ω} , then one can consider the quasi-regular representation $\rho_{G/P}$ of G in $\ell^2(G/P)$.

Theorem 6 ([BG00a]). If G is amenable or the Schreier graph G/P (the Schreier graph of the action of G on the cosets of P) is amenable then the spectrum of M and the spectrum of the quasi-regular representation $\rho_{G/P}$ coincide.

In case the parabolic subgroup P is "small", the last result may be used to compute the spectrum of the Markov operator on the Cayley graph of the group. This approach was successfully used, for instance, to compute the spectrum of the Lamplighter group in [GZ01] (see also [KSS06]).

5. Contracting groups, limit spaces, and iterated monodromy groups

Definition 4. A group G generated by an automaton over alphabet X is contracting if there exists a finite subset $\mathcal{N} \subset G$ such that for every $g \in G$ there exists n (generally depending on g) such that section g_v belongs to \mathcal{N} for all words $v \in X^*$ of length at least n. The smallest set \mathcal{N} with this property is called the *nucleus* of the group G.

The above definition makes sense for arbitrary self-similar groups not necessarily automaton groups and, moreover, not necessarily finitely generated groups. In the case of an automaton group the contracting property may be equivalently stated as follows. An automaton group G = G(A) is contracting if there exist constants κ , C, and N, with $0 \le \kappa < 1$, such that $|g_v| \le \kappa |g| + C$, for all vertices v of length at least N and $g \in G$ (the length is measured with respect to the standard generating set S consisting of the states of A). The contraction property is a key ingredient in many inductive arguments and algorithms involving the decomposition $g = \alpha_g(g_0, \ldots, g_{d-1})$. Indeed, the contraction property implies that, for all sufficiently long elements g, all sections of g at vertices on level at least N are strictly shorter than g.

Contracting groups have rich geometric structure. Each contracting group is the iterated monodromy group of its *limit dynamical system*. This system is an (orbispace) self-covering of the *limit space* of the group. The limit space is a limit of the graphs of the action of G on the levels X^n of the tree X^* and is defined in the following way.

Definition 5. Let G be a contracting group over X. Denote by $X^{-\omega}$ the space of all left-infinite sequences ... x_2x_1 of elements of X with the direct product (Tykhonoff) topology. We say that two sequences ... x_2x_1 and ... y_2y_1 are asymptotically equivalent if there exists a sequences $g_k \in G$, assuming a finite set of values, and such that

$$g_k(x_k \dots x_1) = y_k \dots y_1$$

for all $k \geq 1$. The quotient of the space $X^{-\omega}$ by this equivalence relation is called the *limit space* of G.

The following proposition, proved in [Nek05] (Proposition 3.6.4) is a convenient way to compute the asymptotic equivalence.

Proposition 1. Let a contracting group G be generated by a finite automaton A. Then the asymptotic equivalence is the equivalence relation generated by the set of pairs $(\dots x_2x_1, \dots y_2y_1)$ for which there exists a sequence g_k of states of A such that $g_k(x_k) = y_k$ and $g_k|_{x_k} = g_{k-1}$.

The limit dynamical system is the map induced by the shift $\ldots x_2x_1 \mapsto \ldots x_3x_2$. The limit space is a compact metrizable topological space of finite topological dimension (see [Nek05], Theorem 3.6.3). If the group is self-replicating, then the limit space is locally connected and path connected.

The main tool of finding the limit space of a contracting group is realization of the group as the iterated monodromy group of an expanding partial orbispace self-covering. An exposition of the theory of such self-coverings is given in [Nek05]. In particular, if G is the iterated monodromy group of a post-critically finite complex rational function, then the limit space of G is homeomorphic to the Julia set of the function (see Theorems 5.5.3 and 6.4.4 of [Nek05]).

The limit space does not change when we pass from X to X^n in the natural way (we will change then the limit dynamical system to its nth iterate). It also does not change if we post-conjugate the wreath recursion by an element of the wreath product $Symm(X) \ltimes G^X$, i.e., conjugate the group G by an element of the form $\gamma = \pi(g_0\gamma, g_1\gamma)$, where $\pi \in Symm(X)$ and $g_0, g_1 \in G$.

The limit space can be also visualized using its subdivision into *tiles*. This method is especially effective, when the group is generated by bounded automata.

Definition 6. Let G be a contracting group. A *tile* \mathcal{T}_G of G is the quotient of the space $X^{-\omega}$ by the equivalence relation, which identifies two sequences ... x_2x_1 and ... y_2y_1 if there exists a sequence $g_k \in G$ assuming a finite number of values and such that

$$g_k(x_k \dots x_1) = y_k \dots y_1, \quad g_k|_{x_k \dots x_1} = 1$$

for all k.

Again, an analog of Proposition 1 is true: the equivalence relation from Definition 6 is generated by the identifications ... $x_2x_1 = ... y_2y_1$ of sequences for which there exists a sequence $g_k, k = 0, 1, 2, ...$ of elements of the nucleus such that $g_k(x_k) = y_k$, $g_k|_{x_k} = g_{k-1}$ and $g_0 = 1$.

Suppose that G satisfies the *open set condition*, i.e., the trivial state can be reached from any other state of the generating automaton. Then the *boundary* of the tile T_G is the image in T_G of the set of sequences $\dots x_2x_1$ such that there exists a sequence $g_k \in G$ assuming a finite number of values and such that $g_k|_{x_k\dots x_1} \neq 1$. If G is generated by a finite symmetric set S, then it is sufficient to look for the sequence g_k inside S.

The limit space of G is obtained from the tile by some identifications of the points of the boundary. If the group G is generated by bounded automata, then its boundary consists of a finite number of points and it is not hard to identify them (i.e., to identify the sequences encoding them).

For $v \in X^n$ denote by $\mathcal{T}_G v$ the image of the cylindrical set $X^{-\omega}v$ in \mathcal{T}_G . It is easy to see that the map $\dots x_2x_1 \mapsto \dots x_2x_1v$ induces a homeomorphism of \mathcal{T}_G with $\mathcal{T}_G v$ and that

$$\mathcal{T}_G = \bigcup_{v \in X^n} \mathcal{T}_G v.$$

It is proved in [Nek05] that two pieces $\mathcal{T}_G v_1$ and $\mathcal{T}_G v_2$ intersect if and only if $g(v_1) = v_2$ for an element g of the nucleus of G and that they intersect only along images of the boundary of \mathcal{T}_G .

This suggests the following procedure of visualizing the limit space in the case of bounded automata. Identify the points of the boundary of the tile. We get a finite list B of points, represented by a finite list W of infinite sequences (some points may be represented by several sequences). Draw the tile as a graph with |B| "boundary points" (vertices) and identify the boundary points with the points of B labeled by sequences W. Take now |X| copies of this tile, corresponding to different letters of X. Append the corresponding letters $x \in X$ to the ends of the labels $w \in W$ of the boundary points of each of the copy of the tile. Some of the obtained labels will be related by the equivalence relation of Definition 6, i.e., represent the same points of the tile \mathcal{T}_G . Glue the corresponding points together. Some of the obtained labels will belong to W. These points will be the new boundary points. In this way we get a new graph with labeled boundary points. Repeat now the procedure several times, rescaling the graph in such a way that the original first order graphs become small. We will get in this way a graph resembling the tile \mathcal{T}_G (see Chapter V in [Bon07] for more details). Making the necessary identifications of its boundary we get an approximation of the limit space of G. More details on this inductive approximation procedure can be found in [Nek05] Section 3.10.

The limit space of a finitely generated contracting self-similar group G can also be viewed as a hyperbolic boundary in the following way. For a given finite generating system S of G define the self-similarity graph $\Sigma(G,S)$ as the graph with set of vertices X^* in which two vertices $v_1, v_2 \in X^*$ are connected by an edge if and only if either $v_i = xv_j$, for some $x \in X$ (vertical edges), or $s(v_i) = v_j$ for some $s \in S$ (horizontal edges). In case of a contracting group, the self-similarity graph $\Sigma(G,S)$ is Gromov-hyperbolic and its hyperbolic boundary is homeomorphic to the limit space \mathcal{J}_G .

The iterated monodromy group (IMG) construction is dual to the limit space construction. It may be defined for partial self-coverings of orbispaces, but we will only provide the definition in case of topological spaces, since we do not need the more general construction in this text (all iterated monodromy groups that appear later are related to partial self-coverings of the Riemann sphere).

Let \mathcal{M} be a path connected and locally path connected topological space and let \mathcal{M}_1 be an open path connected subset of \mathcal{M} . Let $f: \mathcal{M}_1 \to \mathcal{M}$ be a d-fold covering. Denote by f^n the n-fold iteration of the map f. Then $f^n: \mathcal{M}_n \to \mathcal{M}$, where $\mathcal{M}_n = f^{-n}(\mathcal{M})$, is a d^n -fold covering.

Fix a base point $t \in \mathcal{M}$ and let T_t be the disjoint union of the sets $f^{-n}(t), n \geq 0$ (formally speaking, these sets may not be disjoint in \mathcal{M}). The set of pre-images T_t has a natural structure of a rooted d-ary tree.

The base point t is the root, the vertices in f^{-n} constitute level n and every vertex z in $f^{-n}(t)$ is connected by an edge to f(z) in $f^{-n+1}(t)$, for $n \geq 1$. The fundamental group $\pi_1(\mathcal{M}, t)$ acts naturally, through the monodromy action, on every level $f^{-n}(t)$ and, in fact, acts by automorphisms on T_t .

Definition 7. The *iterated monodromy group* IMG(f) of the covering f is the quotient of the fundamental group $\pi_1(\mathcal{M}, t)$ by the kernel of its action on the tree of pre-images T_t .

6. Classification guide

Every 3-state automaton \mathcal{A} with set of states $S = \{0, 1, 2\}$ acting on the 2-letter alphabet $X = \{0, 1\}$ is assigned a unique number as follows. Given the wreath recursion

$$\left\{ \begin{array}{l} \mathbf{0} = \sigma^{a_{11}}(a_{12}, a_{13}), \\ \mathbf{1} = \sigma^{a_{21}}(a_{22}, a_{23}), \\ \mathbf{2} = \sigma^{a_{31}}(a_{32}, a_{33}), \end{array} \right.$$

defining the automaton \mathcal{A} , where $a_{ij} \in \{0, 1, 2\}$ for $j \neq 1$ and $a_{i1} \in \{0, 1\}$, i = 1, 2, 3, assign the number

Number(
$$\mathcal{A}$$
) = $a_{12} + 3a_{13} + 9a_{22} + 27a_{23} + 81a_{32} + 243a_{33} + 729(a_{11} + 2a_{21} + 4a_{31}) + 1$

to \mathcal{A} . With this agreement every (3,2)-automaton is assigned a unique number in the range from 1 to 5832. The numbering of the automata is induced by the lexicographic ordering of all automata in the class. Each of the automata numbered 1 through 729 generates the trivial group, since all vertex permutations are trivial in this case. Each of the automata numbered 5104 through 5832 generates the cyclic group C_2 of order 2, since both states represent the automorphism that acts by changing all letters in every word over X. Therefore the nontrivial part of the classification is concerned with the automata numbered by 730 through 5103.

Denote by A_n the automaton numbered by n and by G_n the corresponding group of tree automorphisms. Sometimes we may use just the number to refer to the corresponding automaton or group.

The following three operations on automata do not change the isomorphism class of the group generated by the corresponding automaton (and do not change the action on the tree in essential way):

(i) passing to inverses of all generators,

- (ii) permuting the states of the automaton,
- (iii) permuting the alphabet letters.

Definition 8. Two automata \mathcal{A} and \mathcal{B} that can be obtained from one another by using a composition of the operations (i)–(iii), are called *symmetric*.

For instance, the two automata in the lower right part of Figure 1 are symmetric. The wreath recursion for the automaton obtained by permuting both the names of the states and the alphabet letters of the first of these two automata is

$$a = (b, a)$$

$$b = \sigma(b, a)$$

and this wreath recursion describes exactly the inverses of the tree automorphism defining the second of the two automata.

Additional identifications can be made after automata minimization is applied.

Definition 9. If the minimization of an automaton \mathcal{A} is symmetric to the minimization of an automaton \mathcal{B} , we say that the automata \mathcal{A} and \mathcal{B} are minimally symmetric and write $\mathcal{A} \sim \mathcal{B}$.

There are 194 classes of (3, 2)-automata that are pairwise not minimally symmetric. Of these, 10 are minimally symmetric to automata with fewer than 3 states and, as such, are subject of Theorem 7 ([GNS00], see below).

At present, it is known that there are no more than 122 non-isomorphic (3,2)-automaton groups. Some information on these groups is given in Section 8.

The proofs of some particular properties of the 194 classes of non-equivalent automata (and in particular, all known isomorphisms) can be found in Section 9. The few general results that hold in the whole class were already mentioned in the introduction.

The table in Section 7 may be used to determine the equivalence and the group isomorphism class for each automaton. Every class is numbered by the smallest number of an automaton in the class. For instance, an entry such as $x \sim y \cong z$ means that the automata with the smallest number in the equivalence and the (known) isomorphism class of x are y and z, respectively. While the equivalence classes are easy to determine the isomorphism class is not. Therefore, there may still be some additional isomorphisms between some of the classes (which would

eventually cause changes in the z numbers and consolidation of some of the current isomorphism classes).

If one is interested in some particular (3,2)-automaton \mathcal{A} , we recommend the following procedure:

- Use the table in Section 7 to find numbers for the representatives of the equivalence and the isomorphism class of \mathcal{A} . Minimizing the automaton and finding the symmetry is a straightforward task, which is not presented here.
- Use Section 8 to find information on the group generated by \mathcal{A} (more precisely, the isomorphic group generated by the chosen representative in the class).
- Use Section 9 to find the proof of the isomorphism and some known properties.

7. Table of equivalence classes (and known isomorphisms)

For explanation of the entries see Section 6.

```
1 through 729 \sim 1 \simeq 1,
730 \sim 730 \cong 730 | 767 \sim 767 \cong 731 | 804 \sim 804 \cong 731 | 841 \sim 839
731 \sim 731 \cong 731 | 768 \sim 768 \cong 731 | 805 \sim 803 \cong 771 | 842 \sim 842 \cong
732 \sim 731 \cong 731 | 769 \sim 767 \cong 731 | 806 \sim 806 \cong 802 | 843 \sim 843 \cong 843
733 \sim 731 \cong
                   731 | 770 \sim 770 \cong 730 | 807 \sim 807 \cong 771 | 844 \sim 840 \cong
734 \sim 734 \cong
                    730 | 771 \sim 771 \cong
                                             771 \, | \, 808 \, \sim \, 804 \, \cong
                                                                       731 \, | \, 845 \, \sim \, 843 \, \cong \,
                    730 | 772 \sim 768 \cong 731 | 809 \sim 807 \cong 771 | 846 \sim 846
735 \sim 734 \cong
                   731 | 773 \sim 771 \cong 771 | 810 \sim 810 \cong 802 | 847 \sim 847
736 \sim 731 \cong
                   730 | 774 \sim 774 \cong 730 | 811 \sim 748 \cong 748 | 848 \sim 848
737 \sim 734 \cong
                                                                                                 750
738 \sim 734 \cong
                    730 | 775 \sim 775 \cong 775 | 812 \sim 750 \cong 750 | 849 \sim 849
                                  776 \cong 776 | 813 \sim 749 \cong 749 | 850 \sim 848 \cong
                    739 | 776 \sim
                                  777 \cong 777 | 814 \sim 750 \cong 750 | 851 \sim 851
740 \sim 740 \cong
                    740 777 \sim
                                             776 \, | \, 815 \, \sim \, 756 \, \cong \, 748 \, | \, 852 \, \sim \, 852 \, \cong \,
741 \sim 741 \cong
                    741 | 778 \sim 776 \cong
                    740 | 779 \sim 779 \cong 779 | 816 \sim 753 \cong 753 | 853 \sim 849
742 \sim 740 \cong
                                   780 \cong 780 | 817 \sim 749 \cong 749 | 854 \sim 852 \cong
743 \sim 743 \cong
                    739 | 780 \sim
744 \sim 744 \cong
                   744 \mid 781 \sim 777 \cong 777 \mid 818 \sim 753 \cong 753 \mid 855 \sim 855
                   741 | 782 \sim 780 \cong 780 | 819 \sim 752 \cong 752 | 856 \sim 856
745 \sim 741 \cong
746 \sim 744 \cong 744 | 783 \sim 783 \cong 775 | 820 \sim 820 \cong
                                                                       820
                                                                             857 ~
                                                                                      857 \cong
     \sim 747 \cong 739 | 784 \sim 748 \cong 748 | 821 \sim
                                                             821 \cong 821
                                                                             858 \sim 858
                   748 | 785 \sim 749 \cong 749 | 822 \sim 821 \cong
748 \sim 748 \cong
                                                                       821
                                                                             |859 \sim 857 \cong
                   749 | 786 \sim 750 \cong 750 | 823 \sim 821 \cong
                                                                      821 | 860 \sim 860
749 \sim 749 \cong
                    750 | 787 \sim 749 \cong 749 | 824 \sim 824 \cong
                                                                       820 | 861 \sim 861
751 \sim 749 \cong 749 | 788 \sim 752 \cong 752 | 825 \sim 824 \cong 820 | 862 \sim 858
752 \sim 752 \cong
                   752 | 789 \sim 753 \cong 753 | 826 \sim 821 \cong
                                                                       821 | 863 \sim 861
        753 \cong
                    753 | 790 \sim 750 \cong
                                              750 \, | \, 827 \, \sim \, 824 \, \cong \, 820 \, | \, 864 \, \sim \, 864 \, \cong \,
                    750 | 791 \sim
                                   753 \cong
                                              753 \, | \, 828 \, \sim \, 824 \, \cong \,
                                                                       820
                                                                             865 \sim 865
755 \sim 753 \cong
                    753 | 792 \sim 756 \cong 748 | 829 \sim 820 \cong
                                                                       820
                                                                             866 \sim 866
                    748 | 793 \sim 775
                                          \cong 775 830 \sim 821 \cong
                                                                       821
                                                                             867 \sim 866
756 \sim 756 \cong
                    739 | 794 \sim 776
                                          \cong 776 831 \sim 821
                                                                   \cong
                                                                       821
                                                                             868 \sim 866
                   740|795 \sim 777 \cong 777|832 \sim 821 \cong
        740 \cong
                                                                       821
                                                                             869 \sim 869
759~\sim~741~\cong
                   741 | 796 \sim
                                   776 \cong 776 | 833 \sim 824 \cong
                                                                       820 | 870 \sim 870 \cong
760~\sim~740~\cong
                   740|797 \sim 779 \cong 779|834 \sim 824 \cong
                                                                       820 | 871 \sim 866 \cong
                    739 | 798 \sim 780 \cong 780 | 835 \sim 821 \cong
                                                                       821 | 872 \sim 870
762 \sim 744 \cong 744 | 799 \sim 777 \cong 777
                                                   |836 \sim 824 \cong 820 | 873 \sim 869
763 \sim 741 \cong 741 \mid 800 \sim 780 \cong 780 \mid 837 \sim 824 \cong 820 \mid 874 \sim 874 \cong
764 \sim 744 \cong 744 \mid 801 \sim 783 \cong 775 \mid 838 \sim 838 \cong 838 \mid 875 \sim 875 \cong
765 \sim 747 \cong 739 | 802 \sim 802 \cong 802 | 839 \sim 839 \cong 821 | 876 \sim 876
766 \sim 766 \cong 730 | 803 \sim 803 \cong 771 | 840 \sim 840 \cong 840 | 877 \sim 875 \cong 875
```

 $878 \sim 878 \cong 878 | 920 \sim 920 \cong 920 | 962 \sim 960 \cong 960 | 1004 \sim 824 \cong 820$ $879 \sim 879 \cong 879 | 921 \sim 920 \cong 920 | 963 \sim 963 \cong 963 | 1005 \sim 824 \cong 820$ $880 \sim 876 \cong 876 | 922 \sim 920 \cong 920 | 964 \sim 964 \cong$ $739 \mid 1006 \sim 821 \cong 821$ $881 \sim 879$ $\approx 879 | 923 \sim 923 \approx 923 | 965 \sim 965$ \cong 965 1007 \sim 824 \cong \cong 966 1008 \sim 824 \cong $\approx 882 | 924 \sim 924 \approx 870 | 966 \sim 966$ $\cong 883 | 925 \sim 920 \cong 920 | 967 \sim 965 \cong 965 | 1009 \sim 847 \cong 847$ $883 \sim 883$ 884 $\approx 884 | 926 \sim 924 \approx 870 | 968 \sim$ $968 \cong 968 | 1010 \sim 848 \cong$ 750 $885 \sim 885$ \approx 885 $|927 \sim 923 \cong 923|969 \sim 969$ \approx 969 | 1011 \sim 849 \approx \approx 884 | 928 \sim 928 $\approx 820|970 \sim 966$ \cong 966 | 1012 \sim 848 \cong $886 \sim 884$ $\cong 929 | 971 \sim 969 \cong 969 | 1013 \sim 851 \cong 847$ $887 \sim 887$ \approx 887 | 929 \sim 929 \approx 888 | 930 \sim 930 \approx 821 | 972 \sim 972 $888 \sim 888$ \cong $739 | 1014 \sim 852 \cong$ $889 \sim 885$ $885 | 931 \sim 929$ \cong 929 973 \sim 748 \cong $748 | 1015 \sim 849 \cong$ $890 \sim 888$ \cong $888 \mid 932 \sim 932 \cong 820 \mid 974 \sim 750 \cong$ $750 \mid 1016 \sim 852 \cong 852$ \cong 891 | 933 \sim 933 \cong 849 | 975 \sim 749 \cong $749 | 1017 \sim 855 \cong 847$ 891 $892 \sim 739 \cong 739 \mid 934 \sim 930 \cong 821 \mid 976 \sim 750 \cong 750 \mid 1018 \sim 874 \cong 874$ \cong 741 935 \sim 933 \cong 849 977 \sim $756 \cong$ 741 $748 | 1019 \sim 875 \cong$ $753 | 1020 \sim 876 \cong 876$ $894 \sim 740 \cong 740 | 936 \sim 936 \cong 820 | 978 \sim$ $753 \cong$ $895 \sim 741$ \cong 741 | 937 \sim 937 \cong 937 | 979 \sim 749 \cong $749 | 1021 \sim 875 \cong$ $753 | 1022 \sim 878 \cong$ $896 \sim 747$ \cong $739 | 938 \sim 938$ \cong 938 980 \sim 753 \cong $897 \sim 744$ $744 | 939 \sim 939$ $\approx 939 | 981 \sim 752$ \cong $752 | 1023 \sim 879 \cong$ $898 \sim 740$ \cong $740 | 940 \sim 938 \cong 938 | 982 \sim 838$ \simeq $838 \mid 1024 \sim 876 \cong 876$ $899 \sim 744 \cong 744 | 941 \sim 941 \cong 941 | 983 \sim 839 \cong$ $821 \mid 1025 \sim 879 \cong 879$ $900 \sim 743$ \approx 739 942 \sim 942 $\approx 942 | 984 \sim 840$ \simeq $840 | 1026 \sim 882 \cong$ $901 \sim 820 \cong 820 | 943 \sim 939 \cong 939 | 985 \sim 839 \cong$ $821 | 1027 \sim 820 \cong 820$ $\approx 821 | 944 \sim 942 \approx 942 | 986 \sim 842 \approx$ $838 \mid 1028 \sim 821 \cong 821$ $902 \sim 821$ \cong 821 | 945 \sim 945 \cong 941 | 987 \sim 843 \cong $903 \sim 821$ $843 | 1029 \sim 821 \cong$ $904 \sim 821$ $\approx 821 | 946 \sim 838 | \approx 838 | 988 \sim 840 \approx$ $840 | 1030 \sim 821 \cong$ $905 \sim 824 \cong 820 | 947 \sim 840 \cong 840 | 989 \sim 843 \cong$ $843 \mid 1031 \sim 824 \cong 820$ $906 \sim 824 \cong 820 | 948 \sim 839 \cong 821 | 990 \sim 846 \cong$ $846 \mid 1032 \sim 824 \cong 820$ $907 \sim 821 \cong 821 | 949 \sim 840 \cong 840 | 991 \sim$ $865 \cong$ $820 \mid 1033 \sim 821 \cong$ $|950 \sim 846 \cong 846$ $866 \mid 1034 \sim 824 \cong 820$ $908 \sim 824 \cong 820$ $|992 \sim 866 \cong$ \cong 820 951 \sim 843 \cong 843 993 \sim \cong 866 | 1035 \sim 824 \cong $909 \sim 824$ 866 $910 \sim 820$ $\cong 820 | 952 \sim 839 \cong 821 | 994 \sim 866 \cong$ $866 \mid 1036 \sim 856 \cong 856$ $911 \sim 821$ \cong 821 | 953 \sim 843 \cong 843 | 995 \sim 869 \cong $869 \mid 1037 \sim 857 \cong$ \approx 821 | 954 \sim 842 \cong $838|996 \sim 870 \cong$ $870 \mid 1038 \sim 858 \cong$ $913 \sim 821 \cong 821 | 955 \sim 955 \cong 937 | 997 \sim 866 \cong 866 | 1039 \sim 857 \cong 857$ $914 \sim 824 \cong 820 | 956 \sim 956 \cong 956 | 998 \sim 870 \cong 870 | 1040 \sim 860 \cong$ $915 \sim 824 \cong 820 | 957 \sim 957 \cong 957 | 999 \sim 869 \cong 869 | 1041 \sim 861 \cong$ $916 \sim 821 \cong 821 | 958 \sim$ $956 \cong 956 | 1000 \sim 820 \cong 820 | 1042 \sim 858 \cong 858$ $917 \sim 824 \cong 820 | 959 \sim 959 \cong 959 | 1001 \sim 821 \cong 821 | 1043 \sim 861 \cong 861$ $918 \sim 824 \cong 820 | 960 \sim 960 \cong 960 | 1002 \sim 821 \cong 821 | 1044 \sim 864 \cong 864$ 919 \sim 919 \cong 820 | 961 \sim 957 \cong 957 | 1003 \sim 821 \cong 821 | 1045 \sim 883 \cong 883 $1046 \sim 884 \cong 884 | 1088 \sim 969 \cong 969 | 1130 \sim 1094 \cong 1090 | 1172 \sim 1091 \cong 731$ $1047 \sim 885 \cong 885 | 1089 \sim 968 \cong 968 | 1131 \sim 1094 \cong 1090 | 1173 \sim 1091 \cong 731$ $1048 \sim 884 \cong 884 | 1090 \sim 1090 \cong 1090 | 1132 \sim 1091 \cong 731 | 1174 \sim 1091 \cong 731$ $1049 \sim 887 \cong 887 | 1091 \sim 1091 \cong 731 | 1133 \sim 1094 \cong 1090 | 1175 \sim 1094 \cong 1090$ $1050 \sim 888 \cong 888 | 1092 \sim 1091 \cong 731 | 1134 \sim 1094 \cong 1090 | 1176 \sim 1094 \cong 1090$ $1051 \sim 885 \cong 885 | 1093 \sim 1091 \cong 731 | 1135 \sim 775 \cong 775 | 1177 \sim 1091 \cong 731$ $1052 \sim 888 \cong 888 | 1094 \sim 1094 \cong 1090 | 1136 \sim 777 \cong 777 | 1178 \sim 1094 \cong 1090$ $1053 \sim 891 \cong 891 | 1095 \sim 1094 \cong 1090 | 1137 \sim 776 \cong 776 | 1179 \sim 1094 \cong 1090$ $1054 \sim 802 \cong 802 | 1096 \sim 1091 \cong 731 | 1138 \sim 777 \cong 777 | 1180 \sim 1090 \cong 1090$ $1055 \sim 804 \cong 731 | 1097 \sim 1094 \cong 1090 | 1139 \sim 783 \cong 775 | 1181 \sim 1091 \cong 731$ $1056 \sim 803 \cong 771 | 1098 \sim 1094 \cong 1090 | 1140 \sim 780 \cong 780 | 1182 \sim 1091 \cong 731$ $1057 \sim 804 \cong 731 | 1099 \sim 1090 \cong 1090 | 1141 \sim 776 \cong 776 | 1183 \sim 1091 \cong 731$ $1058 \sim 810 \cong 802 | 1100 \sim 1091 \cong 731 | 1142 \sim 780 \cong 780 | 1184 \sim 1094 \cong 1090$ $1059 \sim 807 \cong 771 | 1101 \sim 1091 \cong 731 | 1143 \sim 779 \cong 779 | 1185 \sim 1094 \cong 1090$ $1060 \sim 803 \cong 771 | 1102 \sim 1091 \cong 731 | 1144 \sim 955 \cong 937 | 1186 \sim 1091 \cong 731$ $1061 \sim 807 \cong 771 | 1103 \sim 1094 \cong 1090 | 1145 \sim 957 \cong 957 | 1187 \sim 1094 \cong 1090$ $1062 \sim 806 \cong 802 | 1104 \sim 1094 \cong 1090 | 1146 \sim 956 \cong 956 | 1188 \sim 1094 \cong 1090$ $1063 \sim 964 \cong 739 | 1105 \sim 1091 \cong 731 | 1147 \sim 957 \cong 957 | 1189 \sim 856 \cong 856$ $1064 \sim 966 \cong 966 | 1106 \sim 1094 \cong 1090 | 1148 \sim 963 \cong 963 | 1190 \sim 858 \cong 858$ $1065 \sim 965 \cong 965 | 1107 \sim 1094 \cong 1090 | 1149 \sim 960 \cong 960 | 1191 \sim 857 \cong 857$ $1066 \sim 966 \cong 966 | 1108 \sim 883 \cong 883 | 1150 \sim 956 \cong 956 | 1192 \sim 858 \cong 858$ $1067 \sim 972 \cong 739 | 1109 \sim 885 \cong 885 | 1151 \sim 960 \cong 960 | 1193 \sim 864 \cong 864$ $1068 \sim 969 \cong 969 | 1110 \sim 884 \cong 884 | 1152 \sim 959 \cong 959 | 1194 \sim 861 \cong 861$ $1069 \sim 965 \cong 965 | 1111 \sim 885 \cong 885 | 1153 \sim 874 \cong 874 | 1195 \sim 857 \cong 857$ $1070 \sim 969 \cong 969 | 1112 \sim 891 \cong 891 | 1154 \sim 876 \cong 876 | 1196 \sim 861 \cong 861$ $1071 \sim 968 \cong 968 | 1113 \sim 888 \cong 888 | 1155 \sim 875 \cong 875 | 1197 \sim 860 \cong 860$ $1072 \sim 883 \cong 883 | 1114 \sim 884 \cong 884 | 1156 \sim 876 \cong 876 | 1198 \sim 1090 \cong 1090$ $1073 \sim 885 \cong 885 | 1115 \sim 888 \cong 888 | 1157 \sim 882 \cong 882 | 1199 \sim 1091 \cong 731$ $1074 \sim 884 \cong 884 | 1116 \sim 887 \cong 887 | 1158 \sim 879 \cong 879 | 1200 \sim 1091 \cong 731$ $1075 \sim 885 \cong 885 | 1117 \sim 1090 \cong 1090 | 1159 \sim 875 \cong 875 | 1201 \sim 1091 \cong 731$ $1076 \sim 891 \cong 891 | 1118 \sim 1091 \cong 731 | 1160 \sim 879 \cong 879 | 1202 \sim 1094 \cong 1090$ $1077 \sim 888 \cong 888 | 1119 \sim 1091 \cong 731 | 1161 \sim 878 \cong 878 | 1203 \sim 1094 \cong 1090$ $1078 \sim 884 \cong 884 | 1120 \sim 1091 \cong 731 | 1162 \sim 937 \cong 937 | 1204 \sim 1091 \cong 731$ $1079 \sim 888 \cong 888 | 1121 \sim 1094 \cong 1090 | 1163 \sim 939 \cong 939 | 1205 \sim 1094 \cong 1090$ $1080 \sim 887 \cong 887 | 1122 \sim 1094 \cong 1090 | 1164 \sim 938 \cong 938 | 1206 \sim 1094 \cong 1090 |$ $1081 \sim 964 \cong 739 | 1123 \sim 1091 \cong 731 | 1165 \sim 939 \cong 939 | 1207 \sim 1090 \cong 1090$ $1082 \sim 966 \cong 966 | 1124 \sim 1094 \cong 1090 | 1166 \sim 945 \cong 941 | 1208 \sim 1091 \cong 731$ $1083 \sim 965 \cong 965 | 1125 \sim 1094 \cong 1090 | 1167 \sim 942 \cong 942 | 1209 \sim 1091 \cong 731$ $1084 \sim 966 \cong 966 | 1126 \sim 1090 \cong 1090 | 1168 \sim 938 \cong 938 | 1210 \sim 1091 \cong 731$ $1085 \sim 972 \cong 739 | 1127 \sim 1091 \cong 731 | 1169 \sim 942 \cong 942 | 1211 \sim 1094 \cong 1090$ $1086 \sim 969 \cong 969 | 1128 \sim 1091 \cong 731 | 1170 \sim 941 \cong 941 | 1212 \sim 1094 \cong 1090$ $1087 \sim 965 \cong 965 | 1129 \sim 1091 \cong 731 | 1171 \sim 1090 \cong 1090 | 1213 \sim 1091 \cong 731$

 $1214 \sim 1094 \cong 1090 | 1256 \sim 932 \cong 820 | 1298 \sim 777 \cong 777 | 1340 \sim 1094 \cong 1090$ $1215 \sim 1094 \cong 1090 | 1257 \sim 933 \cong 849 | 1299 \sim 776 \cong 776 | 1341 \sim 1094 \cong 1090$ $1216 \sim 739 \cong 739 | 1258 \sim 930 \cong 821 | 1300 \sim 777 \cong 777 | 1342 \sim 1090 \cong 1090$ $1217 \sim 741 \cong 741 | 1259 \sim 933 \cong 849 | 1301 \sim 783 \cong 775 | 1343 \sim 1091 \cong 731$ $1218 \sim 740 \cong 740 | 1260 \sim 936 \cong 820 | 1302 \sim 780 \cong 780 | 1344 \sim 1091 \cong 731$ $1219 \sim 741 \cong 741 | 1261 \sim 955 \cong 937 | 1303 \sim 776 \cong 776 | 1345 \sim 1091 \cong 731$ $1220 \sim 747 \cong 739 | 1262 \sim 956 \cong 956 | 1304 \sim 780 \cong 780 | 1346 \sim 1094 \cong 1090$ $1221 \sim 744 \cong 744 | 1263 \sim 957 \cong 957$ $1305 \sim 779 \cong 779 | 1347 \sim 1094 \cong 1090$ $1222 \sim 740 \cong 740 | 1264 \sim 956 \cong 956 | 1306 \sim 937 \cong 937 | 1348 \sim 1091 \cong 731$ $1223 \sim 744 \cong 744 | 1265 \sim 959 \cong 959 | 1307 \sim 939 \cong 939 | 1349 \sim 1094 \cong 1090$ $1224 \sim 743 \cong 739 | 1266 \sim 960 \cong 960 | 1308 \sim 938 \cong 938 | 1350 \sim 1094 \cong 1090$ $1225 \sim 919 \cong 820 | 1267 \sim 957 \cong 957 | 1309 \sim 939 \cong 939 | 1351 \sim 874 \cong 874$ $1226 \sim 920 \cong 920 | 1268 \sim 960 \cong 960 | 1310 \sim 945 \cong 941 | 1352 \sim 876 \cong 876$ $1227 \sim 920 \cong 920 | 1269 \sim 963 \cong 963 | 1311 \sim 942 \cong 942 | 1353 \sim 875 \cong 875$ $1228 \sim 920 \cong 920 | 1270 \sim 820 \cong 820 | 1312 \sim 938 \cong 938 | 1354 \sim 876 \cong 876$ $1229 \sim 923 \cong 923 | 1271 \sim 821 \cong 821 | 1313 \sim 942 \cong 942 | 1355 \sim 882 \cong 882$ $1230 \sim 924 \cong 870 | 1272 \sim 821 \cong 821 | 1314 \sim 941 \cong 941 | 1356 \sim 879 \cong 879$ $1231 \sim 920 \cong 920 | 1273 \sim 821 \cong 821 | 1315 \sim 856 \cong 856 | 1357 \sim 875 \cong 875$ $1232 \sim 924 \cong 870 | 1274 \sim 824 \cong 820 | 1316 \sim 858 \cong 858 | 1358 \sim 879 \cong 879$ $1233 \sim 923 \cong 923 | 1275 \sim 824 \cong 820 | 1317 \sim 857 \cong 857 | 1359 \sim 878 \cong 878$ $1234 \sim 838 \cong 838 | 1276 \sim 821 \cong 821 | 1318 \sim 858 \cong 858 | 1360 \sim 1090 \cong 1090$ $1235 \sim 840 \cong 840 | 1277 \sim 824 \cong 820 | 1319 \sim 864 \cong 864 | 1361 \sim 1091 \cong 731$ $1236 \sim 839 \cong 821 | 1278 \sim 824 \cong 820 | 1320 \sim 861 \cong 861 | 1362 \sim 1091 \cong 731$ $1237 \sim 840 \cong 840 | 1279 \sim 937 \cong 937 | 1321 \sim 857 \cong 857 | 1363 \sim 1091 \cong 731$ $1238 \sim 846 \cong 846 | 1280 \sim 938 \cong 938 | 1322 \sim 861 \cong 861 | 1364 \sim 1094 \cong 1090$ $1239 \sim 843 \cong 843 | 1281 \sim 939 \cong 939 | 1323 \sim 860 \cong 860 | 1365 \sim 1094 \cong 1090$ $1240 \sim 839 \cong 821 | 1282 \sim 938 \cong 938 | 1324 \sim 955 \cong 937 | 1366 \sim 1091 \cong 731$ $1241 \sim 843 \cong 843 | 1283 \sim 941 \cong 941 | 1325 \sim 957 \cong 957 | 1367 \sim 1094 \cong 1090$ $1242 \sim 842 \cong 838 | 1284 \sim 942 \cong 942 | 1326 \sim 956 \cong 956 | 1368 \sim 1094 \cong 1090$ $1243 \sim 820 \cong 820 | 1285 \sim 939 \cong 939 | 1327 \sim 957 \cong 957 | 1369 \sim 1090 \cong 1090$ $1244 \sim 821 \cong 821 | 1286 \sim 942 \cong 942 | 1328 \sim 963 \cong 963 | 1370 \sim 1091 \cong 731$ $1245 \sim 821 \cong 821 | 1287 \sim 945 \cong 941 | 1329 \sim 960 \cong 960 | 1371 \sim 1091 \cong 731$ $1246 \sim 821 \cong 821 | 1288 \sim 964 \cong 739 | 1330 \sim 956 \cong 956 | 1372 \sim 1091 \cong 731$ $1247 \sim 824 \cong 820 | 1289 \sim 965 \cong 965 | 1331 \sim 960 \cong 960 | 1373 \sim 1094 \cong 1090$ $1248 \sim 824 \cong 820 | 1290 \sim 966 \cong 966 | 1332 \sim 959 \cong 959 | 1374 \sim 1094 \cong 1090$ $1249 \sim 821 \cong 821 | 1291 \sim 965 \cong 965 | 1333 \sim 1090 \cong 1090 | 1375 \sim 1091 \cong 731$ $1250 \sim 824 \cong 820 | 1292 \sim 968 \cong 968 | 1334 \sim 1091 \cong 731 | 1376 \sim 1094 \cong 1090$ $1251 \sim 824 \cong 820 | 1293 \sim 969 \cong 969 | 1335 \sim 1091 \cong 731 | 1377 \sim 1094 \cong 1090$ $1252 \sim 928 \cong 820 | 1294 \sim 966 \cong 966 | 1336 \sim 1091 \cong 731 | 1378 \sim 766 \cong 730$ $1253 \sim 929 \cong 929 | 1295 \sim 969 \cong 969 | 1337 \sim 1094 \cong 1090 | 1379 \sim 768 \cong 731$ $1254 \sim 930 \cong 821 | 1296 \sim 972 \cong 739 | 1338 \sim 1094 \cong 1090 | 1380 \sim 767 \cong 731$ $1255 \sim 929 \cong 929 | 1297 \sim 775 \cong 775 | 1339 \sim 1091 \cong 731 | 1381 \sim 768 \cong 731$

 $1382 \sim 774 \cong 730 | 1424 \sim 1091 \cong 731 | 1466 \sim 891 \cong 891 | 1508 \sim 803 \cong 771$ $1383 \sim 771 \cong 771 | 1425 \sim 1091 \cong 731 | 1467 \sim 1094 \cong 1090 | 1509 \sim 884 \cong 884$ $1384 \sim 767 \cong 731 | 1426 \sim 1091 \cong 731 | 1468 \sim 1091 \cong 731 | 1510 \sim 1091 \cong 731$ $1385 \sim 771 \cong 771 | 1427 \sim 1094 \cong 1090 | 1469 \sim 966 \cong 966 | 1511 \sim 884 \cong 884$ $1386 \sim 770 \cong 730 | 1428 \sim 1094 \cong 1090 | 1470 \sim 1091 \cong 731 | 1512 \sim 1091 \cong 731$ $1387 \sim 928 \cong 820 | 1429 \sim 1091 \cong 731 | 1471 \sim 966 \cong 966 | 1513 \sim 1094 \cong 1090$ $1388 \sim 930 \cong 821 | 1430 \sim 1094 \cong 1090 | 1472 \sim 804 \cong 731 | 1514 \sim 969 \cong 969$ $1389 \sim 929 \cong 929 | 1431 \sim 1094 \cong 1090 | 1473 \sim 885 \cong 885 | 1515 \sim 1094 \cong 1090$ $1390 \sim 930 \cong 821 | 1432 \sim 847 \cong 847 | 1474 \sim 1091 \cong 731 | 1516 \sim 969 \cong 969$ $1391 \sim 936 \cong 820 | 1433 \sim 849 \cong 849 | 1475 \sim 885 \cong 885 | 1517 \sim 807 \cong 771$ $1392 \sim 933 \cong 849 \mid 1434 \sim 848 \cong 750 \mid 1476 \sim 1091 \cong 731 \mid 1518 \sim 888 \cong 888$ $1393 \sim 929 \cong 929 | 1435 \sim 849 \cong 849 | 1477 \sim 1094 \cong 1090 | 1519 \sim 1094 \cong 1090$ $1394 \sim 933 \cong 849 | 1436 \sim 855 \cong 847 | 1478 \sim 969 \cong 969 | 1520 \sim 888 \cong 888$ $1395 \sim 932 \cong 820 | 1437 \sim 852 \cong 852 | 1479 \sim 1094 \cong 1090 | 1521 \sim 1094 \cong 1090$ $1396 \sim 847 \cong 847 | 1438 \sim 848 \cong 750 | 1480 \sim 969 \cong 969 | 1522 \sim 1091 \cong 731$ $1397 \sim 849 \cong 849 | 1439 \sim 852 \cong 852 | 1481 \sim 807 \cong 771 | 1523 \sim 965 \cong 965$ $1398 \sim 848 \cong 750 | 1440 \sim 851 \cong 847 | 1482 \sim 888 \cong 888 | 1524 \sim 1091 \cong 731$ $1399 \sim 849 \cong 849 | 1441 \sim 1090 \cong 1090 | 1483 \sim 1094 \cong 1090 | 1525 \sim 965 \cong 965$ $1400 \sim 855 \cong 847 | 1442 \sim 1091 \cong 731 | 1484 \sim 888 \cong 888 | 1526 \sim 803 \cong 771$ $1401 \sim 852 \cong 852 | 1443 \sim 1091 \cong 731 | 1485 \sim 1094 \cong 1090 | 1527 \sim 884 \cong 884$ $1402 \sim 848 \cong 750 | 1444 \sim 1091 \cong 731 | 1486 \sim 1091 \cong 731 | 1528 \sim 1091 \cong 731$ $1403 \sim 852 \cong 852 | 1445 \sim 1094 \cong 1090 | 1487 \sim 966 \cong 966 | 1529 \sim 884 \cong 884$ $1404 \sim 851 \cong 847 | 1446 \sim 1094 \cong 1090 | 1488 \sim 1091 \cong 731 | 1530 \sim 1091 \cong 731$ $1405 \sim 928 \cong 820 | 1447 \sim 1091 \cong 731 | 1489 \sim 966 \cong 966 | 1531 \sim 1094 \cong 1090$ $1406 \sim 930 \cong 821 | 1448 \sim 1094 \cong 1090 | 1490 \sim 804 \cong 731 | 1532 \sim 968 \cong 968$ $1407 \sim 929 \cong 929 | 1449 \sim 1094 \cong 1090 | 1491 \sim 885 \cong 885 | 1533 \sim 1094 \cong 1090$ $1408 \sim 930 \cong 821 | 1450 \sim 1090 \cong 1090 | 1492 \sim 1091 \cong 731 | 1534 \sim 968 \cong 968$ $1409 \sim 936 \cong 820 | 1451 \sim 1091 \cong 731 | 1493 \sim 885 \cong 885 | 1535 \sim 806 \cong 802$ $1410 \sim 933 \cong 849 | 1452 \sim 1091 \cong 731 | 1494 \sim 1091 \cong 731 | 1536 \sim 887 \cong 887$ $1411 \sim 929 \cong 929 | 1453 \sim 1091 \cong 731 | 1495 \sim 1090 \cong 1090 | 1537 \sim 1094 \cong 1090$ $1412 \sim 933 \cong 849 | 1454 \sim 1094 \cong 1090 | 1496 \sim 964 \cong 739 | 1538 \sim 887 \cong 887$ $1413 \sim 932 \cong 820 | 1455 \sim 1094 \cong 1090 | 1497 \sim 1090 \cong 1090 | 1539 \sim 1094 \cong 1090$ $1414 \sim 1090 \cong 1090 | 1456 \sim 1091 \cong 731 | 1498 \sim 964 \cong 739 | 1540 \sim 851 \cong 847$ $1415 \sim 1091 \cong 731 | 1457 \sim 1094 \cong 1090 | 1499 \sim 802 \cong 802 | 1541 \sim 824 \cong 820$ $1416 \sim 1091 \cong 731 | 1458 \sim 1094 \cong 1090 | 1500 \sim 883 \cong 883 | 1542 \sim 878 \cong 878$ $1417 \sim 1091 \cong 731 | 1459 \sim 1094 \cong 1090 | 1501 \sim 1090 \cong 1090 | 1543 \sim 842 \cong 838$ $1418 \sim 1094 \cong 1090 | 1460 \sim 972 \cong 739 | 1502 \sim 883 \cong 883 | 1544 \sim 756 \cong 748$ $1419 \sim 1094 \cong 1090 | 1461 \sim 1094 \cong 1090 | 1503 \sim 1090 \cong 1090 | 1545 \sim 869 \cong 869$ $1420 \sim 1091 \cong 731 \ | 1462 \sim 972 \cong 739 \ | 1504 \sim 1091 \cong 731 \ | 1546 \sim 860 \cong 860$ $1421 \sim 1094 \cong 1090 | 1463 \sim 810 \cong 802 | 1505 \sim 965 \cong 965 | 1547 \sim 824 \cong 820$ $1422 \sim 1094 \cong 1090 | 1464 \sim 891 \cong 891 | 1506 \sim 1091 \cong 731 | 1548 \sim 887 \cong 887$ $1423 \sim 1090 \cong 1090 | 1465 \sim 1094 \cong 1090 | 1507 \sim 965 \cong 965 | 1549 \sim 848 \cong 750$

 $1550 \sim 821 \cong 821 | 1592 \sim 821 \cong 821 | 1634 \sim 777 \cong 777 | 1676 \sim 942 \cong 942$ $1551 \sim 875 \cong 875 | 1593 \sim 885 \cong 885 | 1635 \sim 876 \cong 876 | 1677 \sim 1094 \cong 1090$ $1552 \sim 839 \cong 821 | 1594 \sim 852 \cong 852 | 1636 \sim 1091 \cong 731 | 1678 \sim 960 \cong 960$ $1553 \sim 750 \cong 750 | 1595 \sim 824 \cong 820 | 1637 \sim 858 \cong 858 | 1679 \sim 780 \cong 780$ $1554 \sim 866 \cong 866 | 1596 \sim 879 \cong 879 | 1638 \sim 1091 \cong 731 | 1680 \sim 879 \cong 879$ $1555 \sim 857 \cong 857 | 1597 \sim 843 \cong 843 | 1639 \sim 1094 \cong 1090 | 1681 \sim 1094 \cong 1090$ $1556 \sim 821 \cong 821 | 1598 \sim 753 \cong 753 | 1640 \sim 942 \cong 942 | 1682 \sim 861 \cong 861$ $1557 \sim 884 \cong 884 | 1599 \sim 870 \cong 870 | 1641 \sim 1094 \cong 1090 | 1683 \sim 1094 \cong 1090$ $1558 \sim 852 \cong 852 | 1600 \sim 861 \cong 861 | 1642 \sim 960 \cong 960 | 1684 \sim 1091 \cong 731$ $1559 \sim 824 \cong 820 | 1601 \sim 824 \cong 820 | 1643 \sim 780 \cong 780 | 1685 \sim 938 \cong 938$ $1560 \sim 879 \cong 879 | 1602 \sim 888 \cong 888 | 1644 \sim 879 \cong 879 | 1686 \sim 1091 \cong 731$ $1561 \sim 843 \cong 843 | 1603 \sim 849 \cong 849 | 1645 \sim 1094 \cong 1090 | 1687 \sim 956 \cong 956$ $1562 \sim 753 \cong 753 | 1604 \sim 821 \cong 821 | 1646 \sim 861 \cong 861 | 1688 \sim 776 \cong 776$ $1563 \sim 870 \cong 870 | 1605 \sim 876 \cong 876 | 1647 \sim 1094 \cong 1090 | 1689 \sim 875 \cong 875$ $1564 \sim 861 \cong 861 | 1606 \sim 840 \cong 840 | 1648 \sim 1091 \cong 731 | 1690 \sim 1091 \cong 731$ $1565 \sim 824 \cong 820 | 1607 \sim 749 \cong 749 | 1649 \sim 939 \cong 939 | 1691 \sim 857 \cong 857$ $1566 \sim 888 \cong 888 | 1608 \sim 866 \cong 866 | 1650 \sim 1091 \cong 731 | 1692 \sim 1091 \cong 731$ $1567 \sim 848 \cong 750 | 1609 \sim 858 \cong 858 | 1651 \sim 957 \cong 957 | 1693 \sim 1094 \cong 1090$ $1568 \sim 821 \cong 821 | 1610 \sim 821 \cong 821 | 1652 \sim 777 \cong 777 | 1694 \sim 941 \cong 941$ $1569 \sim 875 \cong 875 | 1611 \sim 885 \cong 885 | 1653 \sim 876 \cong 876 | 1695 \sim 1094 \cong 1090$ $1570 \sim 839 \cong 821 | 1612 \sim 855 \cong 847 | 1654 \sim 1091 \cong 731 | 1696 \sim 959 \cong 959$ $1571 \sim 750 \cong 750 | 1613 \sim 824 \cong 820 | 1655 \sim 858 \cong 858 | 1697 \sim 779 \cong 779$ $1572 \sim 866 \cong 866 | 1614 \sim 882 \cong 882 | 1656 \sim 1091 \cong 731 | 1698 \sim 878 \cong 878$ $1573 \sim 857 \cong 857 | 1615 \sim 846 \cong 846 | 1657 \sim 1090 \cong 1090 | 1699 \sim 1094 \cong 1090$ $1574 \sim 821 \cong 821 | 1616 \sim 752 \cong 752 | 1658 \sim 937 \cong 937 | 1700 \sim 860 \cong 860$ $1575 \sim 884 \cong 884 | 1617 \sim 869 \cong 869 | 1659 \sim 1090 \cong 1090 | 1701 \sim 1094 \cong 1090$ $1576 \sim 847 \cong 847 | 1618 \sim 864 \cong 864 | 1660 \sim 955 \cong 937 | 1702 \sim 851 \cong 847$ $1577 \sim 820 \cong 820 | 1619 \sim 824 \cong 820 | 1661 \sim 775 \cong 775 | 1703 \sim 842 \cong 838$ $1578 \sim 874 \cong 874 | 1620 \sim 891 \cong 891 | 1662 \sim 874 \cong 874 | 1704 \sim 860 \cong 860$ $1579 \sim 838 \cong 838 | 1621 \sim 1094 \cong 1090 | 1663 \sim 1090 \cong 1090 | 1705 \sim 824 \cong 820$ $1580 \sim 748 \cong 748 | 1622 \sim 945 \cong 941 | 1664 \sim 856 \cong 856 | 1706 \sim 756 \cong 748$ $1581 \sim 865 \cong 820 | 1623 \sim 1094 \cong 1090 | 1665 \sim 1090 \cong 1090 | 1707 \sim 824 \cong 820$ $1582 \sim 856 \cong 856 | 1624 \sim 963 \cong 963 | 1666 \sim 1091 \cong 731 | 1708 \sim 878 \cong 878$ $1583 \sim 820 \cong 820 | 1625 \sim 783 \cong 775 | 1667 \sim 938 \cong 938 | 1709 \sim 869 \cong 869$ $1584 \sim 883 \cong 883 | 1626 \sim 882 \cong 882 | 1668 \sim 1091 \cong 731 | 1710 \sim 887 \cong 887$ $1585 \sim 849 \cong 849 | 1627 \sim 1094 \cong 1090 | 1669 \sim 956 \cong 956 | 1711 \sim 848 \cong 750$ $1586 \sim 821 \cong 821 | 1628 \sim 864 \cong 864 | 1670 \sim 776 \cong 776 | 1712 \sim 839 \cong 821$ $1587 \sim 876 \cong 876 | 1629 \sim 1094 \cong 1090 | 1671 \sim 875 \cong 875 | 1713 \sim 857 \cong 857$ $1588 \sim 840 \cong 840 | 1630 \sim 1091 \cong 731 | 1672 \sim 1091 \cong 731 | 1714 \sim 821 \cong 821$ $1589 \sim 749 \cong 749 | 1631 \sim 939 \cong 939 | 1673 \sim 857 \cong 857 | 1715 \sim 750 \cong 750$ $1590 \sim 866 \cong 866 | 1632 \sim 1091 \cong 731 | 1674 \sim 1091 \cong 731 | 1716 \sim 821 \cong 821$ $1591 \sim 858 \cong 858 | 1633 \sim 957 \cong 957 | 1675 \sim 1094 \cong 1090 | 1717 \sim 875 \cong 875$ $1718 \sim 866 \cong 866 | 1760 \sim 753 \cong 753 | 1802 \sim 744 \cong 744 | 1844 \sim 753 \cong 753$ $1719 \sim 884 \cong 884 | 1761 \sim 824 \cong 820 | 1803 \sim 780 \cong 780 | 1845 \sim 807 \cong 771$ $1720 \sim 852 \cong 852 | 1762 \sim 879 \cong 879 | 1804 \sim 744 \cong 744 | 1846 \sim 768 \cong 731$ $1721 \sim 843 \cong 843 | 1763 \sim 870 \cong 870 | 1805 \sim 734 \cong 730 | 1847 \sim 741 \cong 741$ $1722 \sim 861 \cong 861 | 1764 \sim 888 \cong 888 | 1806 \sim 753 \cong 753 | 1848 \sim 777 \cong 777$ $1723 \sim 824 \cong 820 | 1765 \sim 849 \cong 849 | 1807 \sim 780 \cong 780 | 1849 \sim 741 \cong 741$ $1724 \sim 753 \cong 753 | 1766 \sim 840 \cong 840 | 1808 \sim 753 \cong 753 | 1850 \sim 731 \cong 731$ $1725 \sim 824 \cong 820 | 1767 \sim 858 \cong 858 | 1809 \sim 807 \cong 771 | 1851 \sim 750 \cong 750$ $1726 \sim 879 \cong 879 | 1768 \sim 821 \cong 821 | 1810 \sim 767 \cong 731 | 1852 \sim 777 \cong 777$ $1727 \sim 870 \cong 870 | 1769 \sim 749 \cong 749 | 1811 \sim 740 \cong 740 | 1853 \sim 750 \cong 750$ $1728 \sim 888 \cong 888 | 1770 \sim 821 \cong 821 | 1812 \sim 776 \cong 776 | 1854 \sim 804 \cong 731$ $1729 \sim 848 \cong 750 | 1771 \sim 876 \cong 876 | 1813 \sim 740 \cong 740 | 1855 \sim 774 \cong 730$ $1730 \sim 839 \cong 821 | 1772 \sim 866 \cong 866 | 1814 \sim 731 \cong 731 | 1856 \sim 747 \cong 739$ $1731 \sim 857 \cong 857 | 1773 \sim 885 \cong 885 | 1815 \sim 749 \cong 749 | 1857 \sim 783 \cong 775$ $1732 \sim 821 \cong 821 | 1774 \sim 855 \cong 847 | 1816 \sim 776 \cong 776 | 1858 \sim 747 \cong 739$ $1733 \sim 750 \cong 750 | 1775 \sim 846 \cong 846 | 1817 \sim 749 \cong 749 | 1859 \sim 734 \cong 730$ $1734 \sim 821 \cong 821 | 1776 \sim 864 \cong 864 | 1818 \sim 803 \cong 771 | 1860 \sim 756 \cong 748$ $1735 \sim 875 \cong 875 | 1777 \sim 824 \cong 820 | 1819 \sim 766 \cong 730 | 1861 \sim 783 \cong 775$ $1736 \sim 866 \cong 866 | 1778 \sim 752 \cong 752 | 1820 \sim 739 \cong 739 | 1862 \sim 756 \cong 748$ $1737 \sim 884 \cong 884 | 1779 \sim 824 \cong 820 | 1821 \sim 775 \cong 775 | 1863 \sim 810 \cong 802$ $1738 \sim 847 \cong 847 | 1780 \sim 882 \cong 882 | 1822 \sim 739 \cong 739 | 1864 \sim 932 \cong 820$ $1739 \sim 838 \cong 838 | 1781 \sim 869 \cong 869 | 1823 \sim 730 \cong 730 | 1865 \sim 923 \cong 923$ $1740 \sim 856 \cong 856 | 1782 \sim 891 \cong 891 | 1824 \sim 748 \cong 748 | 1866 \sim 941 \cong 941$ $1741 \sim 820 \cong 820 | 1783 \sim 770 \cong 730 | 1825 \sim 775 \cong 775 | 1867 \sim 824 \cong 820$ $1742 \sim 748 \cong 748 | 1784 \sim 743 \cong 739 | 1826 \sim 748 \cong 748 | 1868 \sim 747 \cong 739 | 1826 \sim 748 \cong 748 | 1868 \sim 748 \cong 748 = 7$ $1743 \sim 820 \cong 820 | 1785 \sim 779 \cong 779 | 1827 \sim 802 \cong 802 | 1869 \sim 824 \cong 820$ $1744 \sim 874 \cong 874 | 1786 \sim 743 \cong 739 | 1828 \sim 768 \cong 731 | 1870 \sim 959 \cong 959$ $1745 \sim 865 \cong 820 | 1787 \sim 734 \cong 730 | 1829 \sim 741 \cong 741 | 1871 \sim 846 \cong 846$ $1746 \sim 883 \cong 883 | 1788 \sim 752 \cong 752 | 1830 \sim 777 \cong 777 | 1872 \sim 968 \cong 968$ $1747 \sim 849 \cong 849 | 1789 \sim 779 \cong 779 | 1831 \sim 741 \cong 741 | 1873 \sim 929 \cong 929$ $1748 \sim 840 \cong 840 | 1790 \sim 752 \cong 752 | 1832 \sim 731 \cong 731 | 1874 \sim 920 \cong 920$ $1749 \sim 858 \cong 858 | 1791 \sim 806 \cong 802 | 1833 \sim 750 \cong 750 | 1875 \sim 938 \cong 938$ $1750 \sim 821 \cong 821 | 1792 \sim 767 \cong 731 | 1834 \sim 777 \cong 777 | 1876 \sim 821 \cong 821$ $1751 \sim 749 \cong 749 | 1793 \sim 740 \cong 740 | 1835 \sim 750 \cong 750 | 1877 \sim 741 \cong 741$ $1752 \sim 821 \cong 821 | 1794 \sim 776 \cong 776 | 1836 \sim 804 \cong 731 | 1878 \sim 821 \cong 821$ $1753 \sim 876 \cong 876 | 1795 \sim 740 \cong 740 | 1837 \sim 771 \cong 771 | 1879 \sim 956 \cong 956$ $1754 \sim 866 \cong 866 | 1796 \sim 731 \cong 731 | 1838 \sim 744 \cong 744 | 1880 \sim 840 \cong 840$ $1755 \sim 885 \cong 885 | 1797 \sim 749 \cong 749 | 1839 \sim 780 \cong 780 | 1881 \sim 965 \cong 965$ $1756 \sim 852 \cong 852 | 1798 \sim 776 \cong 776 | 1840 \sim 744 \cong 744 | 1882 \sim 933 \cong 849$ $1757 \sim 843 \cong 843 | 1799 \sim 749 \cong 749 | 1841 \sim 734 \cong 730 | 1883 \sim 924 \cong 870$ $1758 \sim 861 \cong 861 | 1800 \sim 803 \cong 771 | 1842 \sim 753 \cong 753 | 1884 \sim 942 \cong 942$ $1759 \sim 824 \cong 820 | 1801 \sim 771 \cong 771 | 1843 \sim 780 \cong 780 | 1885 \sim 824 \cong 820$

 $1886 \sim 744 \cong 744 | 1928 \sim 920 \cong 920 | 1970 \sim 879 \cong 879 | 2012 \sim 776 \cong 776$ $1887 \sim 824 \cong 820 | 1929 \sim 939 \cong 939 | 1971 \sim 1094 \cong 1090 | 2013 \sim 857 \cong 857$ $1888 \sim 960 \cong 960 | 1930 \sim 821 \cong 821 | 1972 \sim 1091 \cong 731 | 2014 \sim 1091 \cong 731$ $1889 \sim 843 \cong 843 \mid 1931 \sim 740 \cong 740 \mid 1973 \sim 957 \cong 957 \mid 2015 \sim 875 \cong 875$ $1890 \sim 969 \cong 969 | 1932 \sim 821 \cong 821 | 1974 \sim 1091 \cong 731 | 2016 \sim 1091 \cong 731$ $1891 \sim 929 \cong 929 | 1933 \sim 957 \cong 957 | 1975 \sim 939 \cong 939 | 2017 \sim 1094 \cong 1090$ $1892 \sim 920 \cong 920 | 1934 \sim 839 \cong 821 | 1976 \sim 777 \cong 777 | 2018 \sim 959 \cong 959$ $1893 \sim 938 \cong 938 | 1935 \sim 966 \cong 966 | 1977 \sim 858 \cong 858 | 2019 \sim 1094 \cong 1090$ $1894 \sim 821 \cong 821 | 1936 \sim 936 \cong 820 | 1978 \sim 1091 \cong 731 | 2020 \sim 941 \cong 941$ $1895 \sim 741 \cong 741 | 1937 \sim 923 \cong 923 | 1979 \sim 876 \cong 876 | 2021 \sim 779 \cong 779$ $1896 \sim 821 \cong 821 | 1938 \sim 945 \cong 941 | 1980 \sim 1091 \cong 731 | 2022 \sim 860 \cong 860$ $1897 \sim 956 \cong 956 | 1939 \sim 824 \cong 820 | 1981 \sim 1090 \cong 1090 | 2023 \sim 1094 \cong 1090$ $1898 \sim 840 \cong 840 | 1940 \sim 743 \cong 739 | 1982 \sim 955 \cong 937 | 2024 \sim 878 \cong 878$ $1899 \sim 965 \cong 965 | 1941 \sim 824 \cong 820 | 1983 \sim 1090 \cong 1090 | 2025 \sim 1094 \cong 1090$ $1900 \sim 928 \cong 820 | 1942 \sim 963 \cong 963 | 1984 \sim 937 \cong 937 | 2026 \sim 932 \cong 820$ $1901 \sim 919 \cong 820 | 1943 \sim 842 \cong 838 | 1985 \sim 775 \cong 775 | 2027 \sim 824 \cong 820$ $1902 \sim 937 \cong 937 | 1944 \sim 972 \cong 739 | 1986 \sim 856 \cong 856 | 2028 \sim 959 \cong 959$ $1903 \sim 820 \cong 820 | 1945 \sim 1094 \cong 1090 | 1987 \sim 1090 \cong 1090 | 2029 \sim 923 \cong 923$ $1904 \sim 739 \cong 739 | 1946 \sim 963 \cong 963 | 1988 \sim 874 \cong 874 | 2030 \sim 747 \cong 739$ $1905 \sim 820 \cong 820 | 1947 \sim 1094 \cong 1090 | 1989 \sim 1090 \cong 1090 | 2031 \sim 846 \cong 846$ $1906 \sim 955 \cong 937 | 1948 \sim 945 \cong 941 | 1990 \sim 1091 \cong 731 | 2032 \sim 941 \cong 941$ $1907 \sim 838 \cong 838 | 1949 \sim 783 \cong 775 | 1991 \sim 956 \cong 956 | 2033 \sim 824 \cong 820$ $1908 \sim 964 \cong 739 | 1950 \sim 864 \cong 864 | 1992 \sim 1091 \cong 731 | 2034 \sim 968 \cong 968$ $1909 \sim 930 \cong 821 | 1951 \sim 1094 \cong 1090 | 1993 \sim 938 \cong 938 | 2035 \sim 929 \cong 929$ $1910 \sim 920 \cong 920 | 1952 \sim 882 \cong 882 | 1994 \sim 776 \cong 776 | 2036 \sim 821 \cong 821$ $1911 \sim 939 \cong 939 | 1953 \sim 1094 \cong 1090 | 1995 \sim 857 \cong 857 | 2037 \sim 956 \cong 956$ $1912 \sim 821 \cong 821 | 1954 \sim 1091 \cong 731 | 1996 \sim 1091 \cong 731 | 2038 \sim 920 \cong 920$ $1913 \sim 740 \cong 740 | 1955 \sim 957 \cong 957 | 1997 \sim 875 \cong 875 | 2039 \sim 741 \cong 741$ $1914 \sim 821 \cong 821 | 1956 \sim 1091 \cong 731 | 1998 \sim 1091 \cong 731 | 2040 \sim 840 \cong 840$ $1915 \sim 957 \cong 957 | 1957 \sim 939 \cong 939 | 1999 \sim 1094 \cong 1090 | 2041 \sim 938 \cong 938$ $1916 \sim 839 \cong 821 | 1958 \sim 777 \cong 777 | 2000 \sim 960 \cong 960 | 2042 \sim 821 \cong 821$ $1917 \sim 966 \cong 966 | 1959 \sim 858 \cong 858 | 2001 \sim 1094 \cong 1090 | 2043 \sim 965 \cong 965$ $1918 \sim 933 \cong 849 | 1960 \sim 1091 \cong 731 | 2002 \sim 942 \cong 942 | 2044 \sim 933 \cong 849$ $1919 \sim 924 \cong 870 | 1961 \sim 876 \cong 876 | 2003 \sim 780 \cong 780 | 2045 \sim 824 \cong 820$ $1920 \sim 942 \cong 942 | 1962 \sim 1091 \cong 731 | 2004 \sim 861 \cong 861 | 2046 \sim 960 \cong 960$ $1921 \sim 824 \cong 820 | 1963 \sim 1094 \cong 1090 | 2005 \sim 1094 \cong 1090 | 2047 \sim 924 \cong 870$ $1922 \sim 744 \cong 744 | 1964 \sim 960 \cong 960 | 2006 \sim 879 \cong 879 | 2048 \sim 744 \cong 744$ $1923 \sim 824 \cong 820 | 1965 \sim 1094 \cong 1090 | 2007 \sim 1094 \cong 1090 | 2049 \sim 843 \cong 843$ $1924 \sim 960 \cong 960 | 1966 \sim 942 \cong 942 | 2008 \sim 1091 \cong 731 | 2050 \sim 942 \cong 942$ $1925 \sim 843 \cong 843 | 1967 \sim 780 \cong 780 | 2009 \sim 956 \cong 956 | 2051 \sim 824 \cong 820$ $1926 \sim 969 \cong 969 | 1968 \sim 861 \cong 861 | 2010 \sim 1091 \cong 731 | 2052 \sim 969 \cong 969$ $1927 \sim 930 \cong 821 | 1969 \sim 1094 \cong 1090 | 2011 \sim 938 \cong 938 | 2053 \sim 929 \cong 929$ $2054 \sim 821 \cong 821 | 2096 \sim 821 \cong 821 | 2138 \sim 768 \cong 731 | 2180 \sim 932 \cong 820$ $2055 \sim 956 \cong 956 | 2097 \sim 966 \cong 966 | 2139 \sim 849 \cong 849 | 2181 \sim 1094 \cong 1090$ $2056 \sim 920 \cong 920 | 2098 \sim 936 \cong 820 | 2140 \sim 1091 \cong 731 | 2182 \sim 932 \cong 820$ $2057 \sim 741 \cong 741 \mid 2099 \sim 824 \cong 820 \mid 2141 \sim 849 \cong 849 \mid 2183 \sim 770 \cong 730$ $2058 \sim 840 \cong 840 | 2100 \sim 963 \cong 963 | 2142 \sim 1091 \cong 731 | 2184 \sim 851 \cong 847$ $2059 \sim 938 \cong 938 | 2101 \sim 923 \cong 923 | 2143 \sim 1090 \cong 1090 | 2185 \sim 1094 \cong 1090$ $2060 \sim 821 \cong 821 | 2102 \sim 743 \cong 739 | 2144 \sim 928 \cong 820 | 2186 \sim 851 \cong 847$ $2061 \sim 965 \cong 965 | 2103 \sim 842 \cong 838 | 2145 \sim 1090 \cong 1090 | 2187 \sim 1094 \cong 1090$ $2062 \sim 928 \cong 820 | 2104 \sim 945 \cong 941 | 2146 \sim 928 \cong 820 | 2188 \sim 730 \cong 730$ $2063 \sim 820 \cong 820 | 2105 \sim 824 \cong 820 | 2147 \sim 766 \cong 730 | 2189 \sim 730 \cong 730$ $2064 \sim 955 \cong 937 | 2106 \sim 972 \cong 739 | 2148 \sim 847 \cong 847 | 2190 \sim 2190 \cong 750$ $2065 \sim 919 \cong 820 | 2107 \sim 1094 \cong 1090 | 2149 \sim 1090 \cong 1090 | 2191 \sim 730 \cong 730$ $2066 \sim 739 \cong 739 | 2108 \sim 936 \cong 820 | 2150 \sim 847 \cong 847 | 2192 \sim 730 \cong 730$ $2067 \sim 838 \cong 838 | 2109 \sim 1094 \cong 1090 | 2151 \sim 1090 \cong 1090 | 2193 \sim 2193 \cong 2193$ $2068 \sim 937 \cong 937 | 2110 \sim 936 \cong 820 | 2152 \sim 1091 \cong 731 | 2194 \sim 2190 \cong 750$ $2069 \sim 820 \cong 820 | 2111 \sim 774 \cong 730 | 2153 \sim 929 \cong 929 | 2195 \sim 2193 \cong 2193$ $2070 \sim 964 \cong 739 | 2112 \sim 855 \cong 847 | 2154 \sim 1091 \cong 731 | 2196 \sim 2196 \cong 802$ $2071 \sim 930 \cong 821 | 2113 \sim 1094 \cong 1090 | 2155 \sim 929 \cong 929 | 2197 \sim 730 \cong 730$ $2072 \sim 821 \cong 821 | 2114 \sim 855 \cong 847 | 2156 \sim 767 \cong 731 | 2198 \sim 730 \cong 730$ $2073 \sim 957 \cong 957 | 2115 \sim 1094 \cong 1090 | 2157 \sim 848 \cong 750 | 2199 \sim 2199 \cong 2199$ $2074 \sim 920 \cong 920 | 2116 \sim 1091 \cong 731 | 2158 \sim 1091 \cong 731 | 2200 \sim 730 \cong 730$ $2075 \sim 740 \cong 740 | 2117 \sim 930 \cong 821 | 2159 \sim 848 \cong 750 | 2201 \sim 730 \cong 730$ $2076 \sim 839 \cong 821 | 2118 \sim 1091 \cong 731 | 2160 \sim 1091 \cong 731 | 2202 \sim 2202 \cong 2202$ $2077 \sim 939 \cong 939 | 2119 \sim 930 \cong 821 | 2161 \sim 1094 \cong 1090 | 2203 \sim 2203 \cong 2203$ $2078 \sim 821 \cong 821 | 2120 \sim 768 \cong 731 | 2162 \sim 933 \cong 849 | 2204 \sim 2204 \cong 2204$ $2079 \sim 966 \cong 966 | 2121 \sim 849 \cong 849 | 2163 \sim 1094 \cong 1090 | 2205 \sim 2205 \cong 775$ $2080 \sim 933 \cong 849 | 2122 \sim 1091 \cong 731 | 2164 \sim 933 \cong 849 | 2206 \sim 2206 \cong 748$ $2081 \sim 824 \cong 820 | 2123 \sim 849 \cong 849 | 2165 \sim 771 \cong 771 | 2207 \sim 2207 \cong 2207$ $2082 \sim 960 \cong 960 | 2124 \sim 1091 \cong 731 | 2166 \sim 852 \cong 852 | 2208 \sim 731 \cong 731$ $2083 \sim 924 \cong 870 | 2125 \sim 1094 \cong 1090 | 2167 \sim 1094 \cong 1090 | 2209 \sim 2209 \cong 2209$ $2084 \sim 744 \cong 744 | 2126 \sim 933 \cong 849 | 2168 \sim 852 \cong 852 | 2210 \sim 2210 \cong 2210$ $2085 \sim 843 \cong 843 | 2127 \sim 1094 \cong 1090 | 2169 \sim 1094 \cong 1090 | 2211 \sim 731 \cong 731$ $2086 \sim 942 \cong 942 | 2128 \sim 933 \cong 849 | 2170 \sim 1091 \cong 731 | 2212 \sim 2212 \cong 2212$ $2087 \sim 824 \cong 820 | 2129 \sim 771 \cong 771 | 2171 \sim 929 \cong 929 | 2213 \sim 2213 \cong 2213$ $2088 \sim 969 \cong 969 | 2130 \sim 852 \cong 852 | 2172 \sim 1091 \cong 731 | 2214 \sim 2214 \cong 748$ $2089 \sim 930 \cong 821 | 2131 \sim 1094 \cong 1090 | 2173 \sim 929 \cong 929 | 2215 \sim 730 \cong 730$ $2090 \sim 821 \cong 821 | 2132 \sim 852 \cong 852 | 2174 \sim 767 \cong 731 | 2216 \sim 730 \cong 730$ $2091 \sim 957 \cong 957 \ | 2133 \sim 1094 \cong 1090 \ | 2175 \sim 848 \cong 750 \ | 2217 \sim 2203 \cong 2203$ $2092 \sim 920 \cong 920$ | $2134 \sim 1091 \cong 731$ | $2176 \sim 1091 \cong 731$ | $2218 \sim 730 \cong 730$ $2093 \sim 740 \cong 740 | 2135 \sim 930 \cong 821 | 2177 \sim 848 \cong 750 | 2219 \sim 730 \cong 730$ $2094 \sim 839 \cong 821 | 2136 \sim 1091 \cong 731 | 2178 \sim 1091 \cong 731 | 2220 \sim 2204 \cong 2204$ $2095 \sim 939 \cong 939 | 2137 \sim 930 \cong 821 | 2179 \sim 1094 \cong 1090 | 2221 \sim 2199 \cong 2199$

 $2222 \sim 2202 \cong 2202 | 2264 \sim 2264 \cong 730 | 2306 \sim 730 \cong 730 | 2348 \sim 2295 \cong 2295$ $2223 \sim 2205 \cong 775 | 2265 \sim 2265 \cong 2265 | 2307 \sim 2307 \cong 2307 | 2349 \sim 734 \cong 730$ $2224 \sim 730 \cong 730 | 2266 \sim 2262 \cong 750 | 2308 \sim 730 \cong 730 | 2350 \sim 820 \cong 820$ $2225 \sim 730 \cong 730 | 2267 \sim 2265 \cong 2265 | 2309 \sim 730 \cong 730 | 2351 \sim 820 \cong 820$ $2226 \sim 2226 \cong 820 \mid 2268 \sim 734 \cong 730 \mid 2310 \sim 2287 \cong 2287 \mid 2352 \sim 2352 \cong 740$ $2227 \sim 730 \cong 730 | 2269 \sim 730 \cong 730 | 2311 \sim 2307 \cong 2307 | 2353 \sim 820 \cong 820$ $2228 \sim 730 \cong 730 | 2270 \sim 730 \cong 730 | 2312 \sim 2287 \cong 2287 | 2354 \sim 820 \cong 820$ $2229 \sim 2229 \cong 2229 | 2271 \sim 2271 \cong 2271 | 2313 \sim 2313 \cong 2277 | 2355 \sim 2355 \cong 2355$ $2230 \sim 2226 \cong 820 | 2272 \sim 730 \cong 730 | 2314 \sim 2307 \cong 2307 | 2356 \sim 2352 \cong 740$ $2231 \sim 2229 \cong 2229 | 2273 \sim 730 \cong 730 | 2315 \sim 2284 \cong 2284 | 2357 \sim 2355 \cong 2355$ $2232 \sim 2232 \cong 730 | 2274 \sim 2274 \cong 2274 | 2316 \sim 731 \cong 731 | 2358 \sim 2358 \cong 820$ $2233 \sim 2233 \cong 2233 \mid 2275 \sim 2271 \cong 2271 \mid 2317 \sim 2280 \cong 2280 \mid 2359 \sim 820 \cong 820$ $2234 \sim 2234 \cong 2234 | 2276 \sim 2274 \cong 2274 | 2318 \sim 2271 \cong 2271 | 2360 \sim 820 \cong 820$ $2235 \sim 731 \cong 731 | 2277 \sim 2277 \cong 2277 | 2319 \sim 731 \cong 731 | 2361 \sim 2361 \cong 2361$ $2236 \sim 2236 \cong 2236 \mid 2278 \sim 730 \cong 730 \mid 2320 \sim 2320 \cong 2294 \mid 2362 \sim 820 \cong 820$ $2237 \sim 2237 \cong 2237 \mid 2279 \sim 730 \cong 730 \mid 2321 \sim 2293 \cong 2293 \mid 2363 \sim 820 \cong 820$ $2238 \sim 731 \cong 731 \mid 2280 \sim 2280 \cong 2280 \mid 2322 \sim 2322 \cong 2322 \mid 2364 \sim 2364 \cong 2364$ $2239 \sim 2239 \cong 2239 | 2281 \sim 730 \cong 730 | 2323 \sim 2287 \cong 2287 | 2365 \sim 2365 \cong 2365$ $2240 \sim 2240 \cong 2240 | 2282 \sim 730 \cong 730 | 2324 \sim 2283 \cong 2283 | 2366 \sim 2366 \cong 2366$ $2241 \sim 2241 \cong 739 | 2283 \sim 2283 \cong 2283 | 2325 \sim 2293 \cong 2293 | 2367 \sim 2367 \cong 2367$ $2242 \sim 2206 \cong 748 | 2284 \sim 2284 \cong 2284 | 2326 \sim 2285 \cong 2285 | 2368 \sim 2368 \cong 739$ $2243 \sim 2209 \cong 2209 | 2285 \sim 2285 \cong 2285 | 2327 \sim 2274 \cong 2274 | 2369 \sim 2369 \cong 2369$ $2244 \sim 2212 \cong 2212 | 2286 \sim 2286 \cong 2286 | 2328 \sim 2294 \cong 2294 | 2370 \sim 821 \cong 821$ $2245 \sim 2207 \cong 2207 | 2287 \sim 2287 \cong 2287 | 2329 \sim 731 \cong 731 | 2371 \sim 2371 \cong 2371$ $2246 \sim 2210 \cong 2210 | 2288 \sim 2285 \cong 2285 | 2330 \sim 731 \cong 731 | 2372 \sim 2372 \cong 2372$ $2247 \sim 2213 \cong 2213 \mid 2289 \sim 731 \cong 731 \mid 2331 \sim 2295 \cong 2295 \mid 2373 \sim 821 \cong 821$ $2248 \sim 731 \cong 731 | 2290 \sim 2283 \cong 2283 | 2332 \sim 2307 \cong 2307 | 2374 \sim 2374 \cong 821$ $2249 \sim 731 \cong 731 | 2291 \sim 2274 \cong 2274 | 2333 \sim 2280 \cong 2280 | 2375 \sim 2375 \cong 2375$ $2250 \sim 2214 \cong 748 | 2292 \sim 731 \cong 731 | 2334 \sim 2320 \cong 2294 | 2376 \sim 2376 \cong 739$ $2251 \sim 2233 \cong 2233 \mid 2293 \sim 2293 \cong 2293 \mid 2335 \sim 2284 \cong 2284 \mid 2377 \sim 820 \cong 820$ $2252 \sim 2236 \cong 2236 | 2294 \sim 2294 \cong 2294 | 2336 \sim 2271 \cong 2271 | 2378 \sim 820 \cong 820$ $2253 \sim 2239 \cong 2239 | 2295 \sim 2295 \cong 2295 | 2337 \sim 2293 \cong 2293 | 2379 \sim 2365 \cong 2365$ $2254 \sim 2234 \cong 2234 \mid 2296 \sim 730 \cong 730 \mid 2338 \sim 731 \cong 731 \mid 2380 \sim 820 \cong 820$ $2255 \sim 2237 \cong 2237 | 2297 \sim 730 \cong 730 | 2339 \sim 731 \cong 731 | 2381 \sim 820 \cong 820$ $2256 \sim 2240 \cong |2240| |2298 \sim 2284 \cong 2284| |2340 \sim 2322 \cong 2322| |2382 \sim 2366 \cong 2366$ $2257 \sim 731 \cong 731 | 2299 \sim 730 \cong 730 | 2341 \sim 2313 \cong 2277 | 2383 \sim 2361 \cong 2361$ $2258 \sim 731 \cong 731 | 2300 \sim 730 \cong 730 | 2342 \sim 2286 \cong 2286 | 2384 \sim 2364 \cong 2364$ $2259 \sim 2241 \cong 739 | 2301 \sim 2285 \cong 2285 | 2343 \sim 2322 \cong 2322 | 2385 \sim 2367 \cong 2367$ $2260 \sim 2260 \cong 802 \mid 2302 \sim 2280 \cong 2280 \mid 2344 \sim 2286 \cong 2286 \mid 2386 \sim 820 \cong 820$ $2261 \sim 2261 \cong 2261 \mid 2303 \sim 2283 \cong 2283 \mid 2345 \sim 2277 \cong 2277 \mid 2387 \sim 820 \cong 820$ $2262 \sim 2262 \cong 750 | 2304 \sim 2286 \cong 2286 | 2346 \sim 2295 \cong 2295 | 2388 \sim 2388 \cong 821$ $2263 \sim 2261 \cong 2261 \mid 2305 \sim 730 \cong 730 \mid 2347 \sim 2322 \cong 2322 \mid 2389 \sim 820 \cong 820$ $2390 \sim 820 \cong 820 | 2432 \sim 730 \cong 730 | 2474 \sim 2287 \cong 2287 | 2516 \sim 730 \cong 730$ $2391 \sim 2391 \cong 2391 \mid 2433 \sim 2271 \cong 2271 \mid 2475 \sim 2313 \cong 2277 \mid 2517 \sim 2210 \cong 2210$ $2392 \sim 2388 \cong 821 | 2434 \sim 730 \cong 730 | 2476 \sim 2307 \cong 2307 | 2518 \sim 2237 \cong 2237$ $2393 \sim 2391 \cong 2391 \mid 2435 \sim 730 \cong 730 \mid 2477 \sim 2284 \cong 2284 \mid 2519 \sim 2210 \cong 2210$ $2394 \sim 2394 \cong 820 \mid 2436 \sim 2274 \cong 2274 \mid 2478 \sim 731 \cong 731 \mid 2520 \sim 2264 \cong 730$ $2395 \sim 2395 \cong 2395 \mid 2437 \sim 2271 \cong 2271 \mid 2479 \sim 2280 \cong 2280 \mid 2521 \sim 730 \cong 730$ $2396 \sim 2396 \cong 2396 \mid 2438 \sim 2274 \cong 2274 \mid 2480 \sim 2271 \cong 2271 \mid 2522 \sim 730 \cong 730$ $2397 \sim 821 \cong 821 \ | 2439 \sim 2277 \cong 2277 \ | 2481 \sim 731 \cong 731 \ | 2523 \sim 2236 \cong 2236$ $2398 \sim 2398 \cong 2398 \mid 2440 \sim 730 \cong 730 \mid 2482 \sim 2320 \cong 2294 \mid 2524 \sim 730 \cong 730$ $2399 \sim 2399 \cong 2399 | 2441 \sim 730 \cong 730 | 2483 \sim 2293 \cong 2293 | 2525 \sim 730 \cong 730$ $2400 \sim 821 \cong 821 | 2442 \sim 2280 \cong 2280 | 2484 \sim 2322 \cong 2322 | 2526 \sim 2209 \cong 2209$ $2401 \sim 2401 \cong 2401 | 2443 \sim 730 \cong 730 | 2485 \sim 2287 \cong 2287 | 2527 \sim 2234 \cong 2234$ $2402 \sim 2402 \cong 2402 | 2444 \sim 730 \cong 730 | 2486 \sim 2283 \cong 2283 | 2528 \sim 2207 \cong 2207$ $2403 \sim 2403 \cong 2287 \ | 2445 \sim 2283 \cong 2283 \ | 2487 \sim 2293 \cong 2293 \ | 2529 \sim 2261 \cong 2261$ $2404 \sim 2368 \cong 739 | 2446 \sim 2284 \cong 2284 | 2488 \sim 2285 \cong 2285 | 2530 \sim 2229 \cong 2229$ $2405 \sim 2371 \cong 2371 \ | \ 2447 \sim 2285 \cong 2285 \ | \ 2489 \sim 2274 \cong 2274 \ | \ 2531 \sim 2204 \cong 2204$ $2406 \sim 2374 \cong 821 | 2448 \sim 2286 \cong 2286 | 2490 \sim 2294 \cong 2294 | 2532 \sim 731 \cong 731$ $2407 \sim 2369 \cong 2369 | 2449 \sim 2287 \cong 2287 | 2491 \sim 731 \cong 731 | 2533 \sim 2202 \cong 2202$ $2408 \sim 2372 \cong 2372 | 2450 \sim 2285 \cong 2285 | 2492 \sim 731 \cong 731 | 2534 \sim 2193 \cong 2193$ $2409 \sim 2375 \cong 2375 \mid 2451 \sim 731 \cong 731 \mid 2493 \sim 2295 \cong 2295 \mid 2535 \sim 731 \cong 731$ $2410 \sim 821 \cong 821 | 2452 \sim 2283 \cong 2283 | 2494 \sim 2307 \cong 2307 | 2536 \sim 2240 \cong 2240$ $2411 \sim 821 \cong 821 | 2453 \sim 2274 \cong 2274 | 2495 \sim 2280 \cong 2280 | 2537 \sim 2213 \cong 2213$ $2412 \sim 2376 \cong 739 \ | 2454 \sim 731 \cong 731 \ | 2496 \sim 2320 \cong 2294 \ | 2538 \sim 2265 \cong 2265$ $2413 \sim 2395 \cong 2395 | 2455 \sim 2293 \cong 2293 | 2497 \sim 2284 \cong 2284 | 2539 \sim 730 \cong 730$ $2414 \sim 2398 \cong 2398 \mid 2456 \sim 2294 \cong 2294 \mid 2498 \sim 2271 \cong 2271 \mid 2540 \sim 730 \cong 730$ $2415 \sim 2401 \cong 2401 | 2457 \sim 2295 \cong 2295 | 2499 \sim 2293 \cong 2293 | 2541 \sim 2234 \cong 2234$ $2416 \sim 2396 \cong 2396 | 2458 \sim 730 \cong 730 | 2500 \sim 731 \cong 731 | 2542 \sim 730 \cong 730$ $2417 \sim 2399 \cong 2399 | 2459 \sim 730 \cong 730 | 2501 \sim 731 \cong 731 | 2543 \sim 730 \cong 730$ $2418 \sim 2402 \cong 2402 | 2460 \sim 2284 \cong 2284 | 2502 \sim 2322 \cong 2322 | 2544 \sim 2207 \cong 2207$ $2419 \sim 821 \cong 821 | 2461 \sim 730 \cong 730 | 2503 \sim 2313 \cong 2277 | 2545 \sim 2236 \cong 2236$ $2420 \sim 821 \cong 821 | 2462 \sim 730 \cong 730 | 2504 \sim 2286 \cong 2286 | 2546 \sim 2209 \cong 2209$ $2421 \sim 2403 \cong 2287 | 2463 \sim 2285 \cong 2285 | 2505 \sim 2322 \cong 2322 | 2547 \sim 2261 \cong 2261$ $2422 \sim 2422 \cong 820 | 2464 \sim 2280 \cong 2280 | 2506 \sim 2286 \cong 2286 | 2548 \sim 730 \cong 730$ $2423 \sim 2423 \cong 2423 \mid 2465 \sim 2283 \cong 2283 \mid 2507 \sim 2277 \cong 2277 \mid 2549 \sim 730 \cong 730$ $2424 \sim 2424 \cong 966 | 2466 \sim 2286 \cong 2286 | 2508 \sim 2295 \cong 2295 | 2550 \sim 2233 \cong 2233$ $2425 \sim 2423 \cong 2423 | 2467 \sim 730 \cong 730 | 2509 \sim 2322 \cong 2322 | 2551 \sim 730 \cong 730$ $2426 \sim 2426 \cong 2277 | 2468 \sim 730 \cong 730 | 2510 \sim 2295 \cong 2295 | 2552 \sim 730 \cong 730$ $2427 \sim 2427 \cong 2427 | 2469 \sim 2307 \cong 2307 | 2511 \sim 734 \cong 730 | 2553 \sim 2206 \cong 748$ $2429 \sim 2427 \cong 2427 | 2471 \sim 730 \cong 730 | 2513 \sim 730 \cong 730 | 2555 \sim 2206 \cong 748$ $2430 \sim 824 \cong 820 | 2472 \sim 2287 \cong 2287 | 2514 \sim 2237 \cong 2237 | 2556 \sim 2260 \cong 802$ $2431 \sim 730 \cong 730 | 2473 \sim 2307 \cong 2307 | 2515 \sim 730 \cong 730 | 2557 \sim 2226 \cong 820$

 $2558 \sim 2203 \cong 2203 | 2600 \sim 2372 \cong 2372 | 2642 \sim 2352 \cong 740 | 2684 \sim 820 \cong 820$ $2559 \sim 731 \cong 731 | 2601 \sim 2426 \cong 2277 | 2643 \sim 821 \cong 821 | 2685 \sim 2361 \cong 2361$ $2560 \sim 2199 \cong 2199 | 2602 \sim 820 \cong 820 | 2644 \sim 2401 \cong 2401 | 2686 \sim 820 \cong 820$ $2561 \sim 2190 \cong 750 \mid 2603 \sim 820 \cong 820 \mid 2645 \sim 2374 \cong 821 \mid 2687 \sim 820 \cong 820$ $2562 \sim 731 \cong 731 \mid 2604 \sim 2398 \cong 2398 \mid 2646 \sim 2424 \cong 966 \mid 2688 \sim 2364 \cong 2364$ $2563 \sim 2239 \cong 2239 \mid 2605 \sim 820 \cong 820 \mid 2647 \sim 2391 \cong 2391 \mid 2689 \sim 2365 \cong 2365$ $2564 \sim 2212 \cong 2212 | 2606 \sim 820 \cong 820 | 2648 \sim 2364 \cong 2364 | 2690 \sim 2366 \cong 2366$ $2565 \sim 2262 \cong 750 | 2607 \sim 2371 \cong 2371 | 2649 \sim 2402 \cong 2402 | 2691 \sim 2367 \cong 2367$ $2566 \sim 2229 \cong 2229 | 2608 \sim 2396 \cong 2396 | 2650 \sim 2366 \cong 2366 | 2692 \sim 2368 \cong 739$ $2567 \sim 2202 \cong 2202 \mid 2609 \sim 2369 \cong 2369 \mid 2651 \sim 2355 \cong 2355 \mid 2693 \sim 2369 \cong 2369$ $2568 \sim 2240 \cong 2240 | 2610 \sim 2423 \cong 2423 | 2652 \sim 2375 \cong 2375 | 2694 \sim 821 \cong 821$ $2569 \sim 2204 \cong 2204 | 2611 \sim 2391 \cong 2391 | 2653 \sim 821 \cong 821 | 2695 \sim 2371 \cong 2371$ $2570 \sim 2193 \cong 2193 \mid 2612 \sim 2366 \cong 2366 \mid 2654 \sim 821 \cong 821 \mid 2696 \sim 2372 \cong 2372$ $2571 \sim 2213 \cong 2213 \mid 2613 \sim 821 \cong 821 \mid 2655 \sim 2427 \cong 2427 \mid 2697 \sim 821 \cong 821$ $2572 \sim 731 \cong 731 | 2614 \sim 2364 \cong 2364 | 2656 \sim 2388 \cong 821 | 2698 \sim 2374 \cong 821$ $2573 \sim 731 \cong 731 \mid 2615 \sim 2355 \cong 2355 \mid 2657 \sim 2361 \cong 2361 \mid 2699 \sim 2375 \cong 2375$ $2574 \sim 2265 \cong 2265 \mid 2616 \sim 821 \cong 821 \mid 2658 \sim 2401 \cong 2401 \mid 2700 \sim 2376 \cong 739$ $2575 \sim 2226 \cong 820 | 2617 \sim 2402 \cong 2402 | 2659 \sim 2365 \cong 2365 | 2701 \sim 820 \cong 820$ $2576 \sim 2199 \cong 2199 | 2618 \sim 2375 \cong 2375 | 2660 \sim 2352 \cong 740 | 2702 \sim 820 \cong 820$ $2577 \sim 2239 \cong 2239 | 2619 \sim 2427 \cong 2427 | 2661 \sim 2374 \cong 821 | 2703 \sim 2365 \cong 2365$ $2578 \sim 2203 \cong 2203 | 2620 \sim 820 \cong 820 | 2662 \sim 821 \cong 821 | 2704 \sim 820 \cong 820$ $2579 \sim 2190 \cong 750 | 2621 \sim 820 \cong 820 | 2663 \sim 821 \cong 821 | 2705 \sim 820 \cong 820$ $2580 \sim 2212 \cong 2212 \, | \, 2622 \sim 2396 \cong 2396 \, | \, 2664 \sim 2424 \cong 966 \, | \, 2706 \sim 2366 \cong 2366$ $2581 \sim 731 \cong 731 | 2623 \sim 820 \cong 820 | 2665 \sim 2394 \cong 820 | 2707 \sim 2361 \cong 2361$ $2582 \sim 731 \cong 731 | 2624 \sim 820 \cong 820 | 2666 \sim 2367 \cong 2367 | 2708 \sim 2364 \cong 2364$ $2583 \sim 2262 \cong 750 | 2625 \sim 2369 \cong 2369 | 2667 \sim 2403 \cong 2287 | 2709 \sim 2367 \cong 2367$ $2584 \sim 2232 \cong 730 | 2626 \sim 2398 \cong 2398 | 2668 \sim 2367 \cong 2367 | 2710 \sim 820 \cong 820$ $2585 \sim 2205 \cong 775 | 2627 \sim 2371 \cong 2371 | 2669 \sim 2358 \cong 820 | 2711 \sim 820 \cong 820$ $2586 \sim 2241 \cong 739 | 2628 \sim 2423 \cong 2423 | 2670 \sim 2376 \cong 739 | 2712 \sim 2388 \cong 821$ $2587 \sim 2205 \cong 775 | 2629 \sim 820 \cong 820 | 2671 \sim 2403 \cong 2287 | 2713 \sim 820 \cong 820$ $2588 \sim 2196 \cong 802 | 2630 \sim 820 \cong 820 | 2672 \sim 2376 \cong 739 | 2714 \sim 820 \cong 820$ $2590 \sim 2241 \cong 739 | 2632 \sim 820 \cong 820 | 2674 \sim 820 \cong 820 | 2716 \sim 2388 \cong 821$ $2591 \sim 2214 \cong 748 \mid 2633 \sim 820 \cong 820 \mid 2675 \sim 820 \cong 820 \mid 2717 \sim 2391 \cong 2391$ $2592 \sim 734 \cong 730 | 2634 \sim 2368 \cong 739 | 2676 \sim 2352 \cong 740 | 2718 \sim 2394 \cong 820$ $2593 \sim 820 \cong 820 | 2635 \sim 2395 \cong 2395 | 2677 \sim 820 \cong 820 | 2719 \sim 2395 \cong 2395$ $2594 \sim 820 \cong 820 | 2636 \sim 2368 \cong 739 | 2678 \sim 820 \cong 820 | 2720 \sim 2396 \cong 2396$ $2595 \sim 2399 \cong 2399 | 2637 \sim 2422 \cong 820 | 2679 \sim 2355 \cong 2355 | 2721 \sim 821 \cong 821$ $2596 \sim 820 \cong 820 \mid 2638 \sim 2388 \cong 821 \mid 2680 \sim 2352 \cong 740 \mid 2722 \sim 2398 \cong 2398$ $2597 \sim 820 \cong 820 | 2639 \sim 2365 \cong 2365 | 2681 \sim 2355 \cong 2355 | 2723 \sim 2399 \cong 2399$ $2598 \sim 2372 \cong 2372 \mid 2640 \sim 821 \cong 821 \mid 2682 \sim 2358 \cong 820 \mid 2724 \sim 821 \cong 821$ $2599 \sim 2399 \cong 2399 | 2641 \sim 2361 \cong 2361 | 2683 \sim 820 \cong 820 | 2725 \sim 2401 \cong 2401$ $2726 \sim 2402 \cong 2402 | 2768 \sim 820 \cong 820 | 2810 \sim 2364 \cong 2364 | 2852 \sim 2852 \cong 849$ $2727 \sim 2403 \cong 2287 | 2769 \sim 2371 \cong 2371 | 2811 \sim 2402 \cong 2402 | 2853 \sim 2853 \cong 2853$ $2728 \sim 2368 \cong 739 | 2770 \sim 2396 \cong 2396 | 2812 \sim 2366 \cong 2366 | 2854 \sim 2854 \cong 847$ $2729 \sim 2371 \cong 2371 | 2771 \sim 2369 \cong 2369 | 2813 \sim 2355 \cong 2355 | 2855 \sim 2852 \cong 849$ $2730 \sim 2374 \cong 821 | 2772 \sim 2423 \cong 2423 | 2814 \sim 2375 \cong 2375 | 2856 \sim 1091 \cong 731$ $2731 \sim 2369 \cong 2369 | 2773 \sim 2391 \cong 2391 | 2815 \sim 821 \cong 821 | 2857 \sim 2850 \cong 2850$ $2732 \sim 2372 \cong 2372 | 2774 \sim 2366 \cong 2366 | 2816 \sim 821 \cong 821 | 2858 \sim 2841 \cong 2841$ $2733 \sim 2375 \cong 2375 \mid 2775 \sim 821 \cong 821 \mid 2817 \sim 2427 \cong 2427 \mid 2859 \sim 1091 \cong 731$ $2734 \sim 821 \cong 821 | 2776 \sim 2364 \cong 2364 | 2818 \sim 2388 \cong 821 | 2860 \sim 2860 \cong 2212$ $2735 \sim 821 \cong 821 | 2777 \sim 2355 \cong 2355 | 2819 \sim 2361 \cong 2361 | 2861 \sim 2861 \cong 731$ $2736 \sim 2376 \cong 739 | 2778 \sim 821 \cong 821 | 2820 \sim 2401 \cong 2401 | 2862 \sim 2862 \cong 847$ $2737 \sim 2395 \cong 2395 | 2779 \sim 2402 \cong 2402 | 2821 \sim 2365 \cong 2365 | 2863 \sim 1090 \cong 1090$ $2738 \sim 2398 \cong 2398 | 2780 \sim 2375 \cong 2375 | 2822 \sim 2352 \cong 740 | 2864 \sim 1090 \cong 1090$ $2739 \sim 2401 \cong 2401 | 2781 \sim 2427 \cong 2427 | 2823 \sim 2374 \cong 821 | 2865 \sim 2851 \cong 929$ $2740 \sim 2396 \cong 2396 | 2782 \sim 820 \cong 820 | 2824 \sim 821 \cong 821 | 2866 \sim 1090 \cong 1090$ $2741 \sim 2399 \cong 2399 | 2783 \sim 820 \cong 820 | 2825 \sim 821 \cong 821 | 2867 \sim 1090 \cong 1090$ $2742 \sim 2402 \cong 2402 | 2784 \sim 2396 \cong 2396 | 2826 \sim 2424 \cong 966 | 2868 \sim 2852 \cong 849$ $2743 \sim 821 \cong 821 | 2785 \sim 820 \cong 820 | 2827 \sim 2394 \cong 820 | 2869 \sim 2847 \cong 929$ $2744 \sim 821 \cong 821 | 2786 \sim 820 \cong 820 | 2828 \sim 2367 \cong 2367 | 2870 \sim 2850 \cong 2850$ $2745 \sim 2403 \cong 2287 | 2787 \sim 2369 \cong 2369 | 2829 \sim 2403 \cong 2287 | 2871 \sim 2853 \cong 2853$ $2746 \sim 2422 \cong 820 | 2788 \sim 2398 \cong 2398 | 2830 \sim 2367 \cong 2367 | 2872 \sim 1090 \cong 1090$ $2747 \sim 2423 \cong 2423 | 2789 \sim 2371 \cong 2371 | 2831 \sim 2358 \cong 820 | 2873 \sim 1090 \cong 1090$ $2748 \sim 2424 \cong 966 | 2790 \sim 2423 \cong 2423 | 2832 \sim 2376 \cong 739 | 2874 \sim 2874 \cong 820$ $2749 \sim 2423 \cong 2423 | 2791 \sim 820 \cong 820 | 2833 \sim 2403 \cong 2287 | 2875 \sim 1090 \cong 1090$ $2750 \sim 2426 \cong 2277 | 2792 \sim 820 \cong 820 | 2834 \sim 2376 \cong 739 | 2876 \sim 1090 \cong 1090$ $2751 \sim 2427 \cong 2427 | 2793 \sim 2395 \cong 2395 | 2835 | \sim 824 \cong 820 | 2877 \sim 2854 \cong 847$ $2752 \sim 2424 \cong 966 | 2794 \sim 820 \cong 820 | 2836 \sim 1090 \cong 1090 | 2878 \sim 2874 \cong 820$ $2753 \sim 2427 \cong 2427 | 2795 \sim 820 \cong 820 | 2837 \sim 1090 \cong 1090 | 2879 \sim 2854 \cong 847$ $2754 \sim 824 \cong 820 | 2796 \sim 2368 \cong 739 | 2838 \sim 2838 \cong 750 | 2880 \sim 2880 \cong 730$ $2755 \sim 820 \cong 820 | 2797 \sim 2395 \cong 2395 | 2839 \sim 1090 \cong 1090 | 2881 \sim 2874 \cong 820$ $2756 \sim 820 \cong 820 | 2798 \sim 2368 \cong 739 | 2840 \sim 1090 \cong 1090 | 2882 \sim 2851 \cong 929$ $2757 \sim 2399 \cong 2399 | 2799 \sim 2422 \cong 820 | 2841 \sim 2841 \cong 2841 | 2883 \sim 1091 \cong 731$ $2758 \sim 820 \cong 820 | 2800 \sim 2388 \cong 821 | 2842 \sim 2838 \cong 750 | 2884 \sim 2847 \cong 929$ $2759 \sim 820 \cong 820 | 2801 \sim 2365 \cong 2365 | 2843 \sim 2841 \cong 2841 | 2885 \sim 2838 \cong 750$ $2760 \sim 2372 \cong 2372 \mid 2802 \sim 821 \cong 821 \mid 2844 \sim 2844 \cong 730 \mid 2886 \sim 1091 \cong 731$ $2761 \sim 2399 \cong 2399 | 2803 \sim 2361 \cong 2361 | 2845 \sim 1090 \cong 1090 | 2887 \sim 2887 \cong 731$ $2762 \sim 2372 \cong 2372 \mid 2804 \sim 2352 \cong 740 \mid 2846 \sim 1090 \cong 1090 \mid 2888 \sim 2860 \cong 2212$ $2763 \sim 2426 \cong 2277 \ | 2805 \ \sim \ 821 \ \cong \ 821 \ | 2847 \ \sim \ 2847 \ \cong \ 929 \ | 2889 \ \sim \ 2889 \ \cong \ 750$ $2764 \sim 820 \cong 820 | 2806 \sim 2401 \cong 2401 | 2848 \sim 1090 \cong 1090 | 2890 \sim 2854 \cong 847$ $2765 \sim 820 \cong 820 | 2807 \sim 2374 \cong 821 | 2849 \sim 1090 \cong 1090 | 2891 \sim 2850 \cong 2850$ $2766 \sim 2398 \cong 2398 \mid 2808 \sim 2424 \cong 966 \mid 2850 \sim 2850 \cong 2850 \mid 2892 \sim 2860 \cong 2212$ $2767 \sim 820 \cong 820 | 2809 \sim 2391 \cong 2391 | 2851 \sim 2851 \cong 929 | 2893 \sim 2852 \cong 849$

 $2894 \sim 2841 \cong 2841 | 2936 \sim 878 \cong 878 | 2978 \sim 824 \cong 820 | 3020 \sim 888 \cong 888$ $2895 \sim 2861 \cong 731 \mid 2937 \sim 824 \cong 820 \mid 2979 \sim 756 \cong 748 \mid 3021 \sim 824 \cong 820$ $2896 \sim 1091 \cong 731 \mid 2938 \sim 860 \cong 860 \mid 2980 \sim 932 \cong 820 \mid 3022 \sim 843 \cong 843$ $2897 \sim 1091 \cong 731 \mid 2939 \sim 887 \cong 887 \mid 2981 \sim 941 \cong 941 \mid 3023 \sim 870 \cong 870$ $2898 \sim 2862 \cong 847 \mid 2940 \sim 824 \cong 820 \mid 2982 \sim 923 \cong 923 \mid 3024 \sim 753 \cong 753$ $2899 \sim 2874 \cong 820 \mid 2941 \sim 842 \cong 838 \mid 2983 \sim 959 \cong 959 \mid 3025 \sim 1094 \cong 1090$ $2900 \sim 2847 \cong 929 | 2942 \sim 869 \cong 869 | 2984 \sim 968 \cong 968 | 3026 \sim 1094 \cong 1090$ $2901 \sim 2887 \cong 731 \mid 2943 \sim 756 \cong 748 \mid 2985 \sim 846 \cong 846 \mid 3027 \sim 960 \cong 960$ $2902 \sim 2851 \approx 929 | 2944 \sim 1094 \approx 1090 | 2986 \sim 824 \approx 820 | 3028 \sim 1094 \approx 1090$ $2903 \sim 2838 \cong 750 | 2945 \sim 1094 \cong 1090 | 2987 \sim 824 \cong 820 | 3029 \sim 1094 \cong 1090$ $2904 \sim 2860 \cong 2212 | 2946 \sim 963 \cong 963 | 2988 \sim 747 \cong 739 | 3030 \sim 879 \cong 879$ $2905 \sim 1091 \cong 731 | 2947 \sim 1094 \cong 1090 | 2989 \sim 770 \cong 730 | 3031 \sim 942 \cong 942$ $2906 \sim 1091 \cong 731 | 2948 \sim 1094 \cong 1090 | 2990 \sim 779 \cong 779 | 3032 \sim 861 \cong 861$ $2907 \sim 2889 \cong 750 | 2949 \sim 882 \cong 882 | 2991 \sim 743 \cong 739 | 3033 \sim 780 \cong 780$ $2908 \sim 2880 \cong 730 | 2950 \sim 945 \cong 941 | 2992 \sim 779 \cong 779 | 3034 \sim 1094 \cong 1090$ $2909 \sim 2853 \cong 2853 \mid 2951 \sim 864 \cong 864 \mid 2993 \sim 806 \cong 802 \mid 3035 \sim 1094 \cong 1090$ $2910 \sim 2889 \cong 750 | 2952 \sim 783 \cong 775 | 2994 \sim 752 \cong 752 | 3036 \sim 933 \cong 849$ $2911 \sim 2853 \cong 2853 | 2953 \sim 1094 \cong 1090 | 2995 \sim 743 \cong 739 | 3037 \sim 1094 \cong 1090$ $2912 \sim 2844 \cong 730 | 2954 \sim 1094 \cong 1090 | 2996 \sim 752 \cong 752 | 3038 \sim 1094 \cong 1090$ $2913 \sim 2862 \cong 847 | 2955 \sim 936 \cong 820 | 2997 \sim 734 \cong 730 | 3039 \sim 852 \cong 852$ $2914 \sim 2889 \cong 750 | 2956 \sim 1094 \cong 1090 | 2998 \sim 1094 \cong 1090 | 3040 \sim 933 \cong 849$ $2915 \sim 2862 \approx 847 | 2957 \sim 1094 \approx 1090 | 2999 \sim 1094 \approx 1090 | 3041 \sim 852 \approx 852$ $2916 \sim 1094 \cong 1090 | 2958 \sim 855 \cong 847 | 3000 \sim 969 \cong 969 | 3042 \sim 771 \cong 771$ $2917 \sim 1094 \cong 1090 | 2959 \sim 936 \cong 820 | 3001 \sim 1094 \cong 1090 | 3043 \sim 933 \cong 849$ $2918 \sim 1094 \cong 1090 | 2960 \sim 855 \cong 847 | 3002 \sim 1094 \cong 1090 | 3044 \sim 960 \cong 960$ $2919 \sim 972 \cong 739 | 2961 \sim 774 \cong 730 | 3003 \sim 888 \cong 888 | 3045 \sim 824 \cong 820$ $2920 \sim 1094 \cong 1090 | 2962 \sim 932 \cong 820 | 3004 \sim 969 \cong 969 | 3046 \sim 942 \cong 942$ $2921 \sim 1094 \cong 1090 | 2963 \sim 959 \cong 959 | 3005 \sim 888 \cong 888 | 3047 \sim 969 \cong 969$ $2922 \sim 891 \cong 891 \mid 2964 \sim 824 \cong 820 \mid 3006 \sim 807 \cong 771 \mid 3048 \sim 824 \cong 820$ $2923 \sim 972 \cong 739 | 2965 \sim 941 \cong 941 | 3007 \sim 1094 \cong 1090 | 3049 \sim 924 \cong 870$ $2924 \sim 891 \cong 891 | 2966 \sim 968 \cong 968 | 3008 \sim 1094 \cong 1090 | 3050 \sim 843 \cong 843$ $2925 \sim 810 \cong 802 | 2967 \sim 824 \cong 820 | 3009 \sim 942 \cong 942 | 3051 \sim 744 \cong 744$ $2926 \sim 1094 \cong 1090 | 2968 \sim 923 \cong 923 | 3010 \sim 1094 \cong 1090 | 3052 \sim 852 \cong 852$ $2927 \sim 1094 \cong 1090 | 2969 \sim 846 \cong 846 | 3011 \sim 1094 \cong 1090 | 3053 \sim 861 \cong 861$ $2928 \sim 945 \cong 941 | 2970 \sim 747 \cong 739 | 3012 \sim 861 \cong 861 | 3054 \sim 843 \cong 843$ $2929 \sim 1094 \cong 1090 | 2971 \sim 851 \cong 847 | 3013 \sim 960 \cong 960 | 3055 \sim 879 \cong 879$ $2930 \sim 1094 \cong 1090 | 2972 \sim 860 \cong 860 | 3014 \sim 879 \cong 879 | 3056 \sim 888 \cong 888$ $2931 \sim 864 \cong 864 \mid 2973 \sim 842 \cong 838 \mid 3015 \sim 780 \cong 780 \mid 3057 \sim 870 \cong 870$ $2932 \sim 963 \cong 963 \mid 2974 \sim 878 \cong 878 \mid 3016 \sim 852 \cong 852 \mid 3058 \sim 824 \cong 820$ $2933 \sim 882 \cong 882 | 2975 \sim 887 \cong 887 | 3017 \sim 879 \cong 879 | 3059 \sim 824 \cong 820$ $2934 \sim 783 \cong 775 | 2976 \sim 869 \cong 869 | 3018 \sim 824 \cong 820 | 3060 \sim 753 \cong 753$ $2935 \sim 851 \cong 847 | 2977 \sim 824 \cong 820 | 3019 \sim 861 \cong 861 | 3061 \sim 933 \cong 849$ $3062 \sim 942 \cong 942 | 3104 \sim 866 \cong 866 | 3146 \sim 965 \cong 965 | 3188 \sim 1094 \cong 1090$ $3063 \sim 924 \cong 870 | 3105 \sim 750 \cong 750 | 3147 \sim 840 \cong 840 | 3189 \sim 960 \cong 960$ $3064 \sim 960 \cong 960 | 3106 \sim 1091 \cong 731 | 3148 \sim 821 \cong 821 | 3190 \sim 1094 \cong 1090$ $3065 \sim 969 \cong 969 | 3107 \sim 1091 \cong 731 | 3149 \sim 821 \cong 821 | 3191 \sim 1094 \cong 1090$ $3066 \sim 843 \cong 843 | 3108 \sim 957 \cong 957 | 3150 \sim 741 \cong 741 | 3192 \sim 879 \cong 879$ $3067 \sim 824 \cong 820 | 3109 \sim 1091 \cong 731 | 3151 \sim 767 \cong 731 | 3193 \sim 942 \cong 942$ $3068 \sim 824 \cong 820 | 3110 \sim 1091 \cong 731 | 3152 \sim 776 \cong 776 | 3194 \sim 861 \cong 861$ $3069 \sim 744 \cong 744 \ | 3111 \sim 876 \cong 876 \ | 3153 \sim 740 \cong 740 \ | 3195 \sim 780 \cong 780$ $3070 \sim 771 \cong 771 | 3112 \sim 939 \cong 939 | 3154 \sim 776 \cong 776 | 3196 \sim 1094 \cong 1090$ $3071 \sim 780 \cong 780 | 3113 \sim 858 \cong 858 | 3155 \sim 803 \cong 771 | 3197 \sim 1094 \cong 1090$ $3072 \sim 744 \cong 744 | 3114 \sim 777 \cong 777 | 3156 \sim 749 \cong 749 | 3198 \sim 933 \cong 849$ $3073 \sim 780 \cong 780 | 3115 \sim 1091 \cong 731 | 3157 \sim 740 \cong 740 | 3199 \sim 1094 \cong 1090$ $3074 \sim 807 \cong 771 | 3116 \sim 1091 \cong 731 | 3158 \sim 749 \cong 749 | 3200 \sim 1094 \cong 1090$ $3075 \sim 753 \cong 753 | 3117 \sim 930 \cong 821 | 3159 \sim 731 \cong 731 | 3201 \sim 852 \cong 852$ $3077 \sim 753 \cong 753 | 3119 \sim 1091 \cong 731 | 3161 \sim 1094 \cong 1090 | 3203 \sim 852 \cong 852$ $3078 \sim 734 \cong 730 | 3120 \sim 849 \cong 849 | 3162 \sim 969 \cong 969 | 3204 \sim 771 \cong 771$ $3079 \sim 1091 \cong 731 | 3121 \sim 930 \cong 821 | 3163 \sim 1094 \cong 1090 | 3205 \sim 933 \cong 849$ $3080 \sim 1091 \cong 731 | 3122 \sim 849 \cong 849 | 3164 \sim 1094 \cong 1090 | 3206 \sim 960 \cong 960$ $3081 \sim 966 \cong 966 | 3123 \sim 768 \cong 731 | 3165 \sim 888 \cong 888 | 3207 \sim 824 \cong 820$ $3082 \sim 1091 \cong 731 | 3124 \sim 929 \cong 929 | 3166 \sim 969 \cong 969 | 3208 \sim 942 \cong 942$ $3083 \sim 1091 \cong 731 | 3125 \sim 956 \cong 956 | 3167 \sim 888 \cong 888 | 3209 \sim 969 \cong 969$ $3084 \sim 885 \cong 885 | 3126 \sim 821 \cong 821 | 3168 \sim 807 \cong 771 | 3210 \sim 824 \cong 820$ $3085 \sim 966 \cong 966 | 3127 \sim 938 \cong 938 | 3169 \sim 1094 \cong 1090 | 3211 \sim 924 \cong 870$ $3086 \sim 885 \cong 885 | 3128 \sim 965 \cong 965 | 3170 \sim 1094 \cong 1090 | 3212 \sim 843 \cong 843$ $3087 \sim 804 \cong 731 | 3129 \sim 821 \cong 821 | 3171 \sim 942 \cong 942 | 3213 \sim 744 \cong 744$ $3088 \sim 1091 \cong 731 | 3130 \sim 920 \cong 920 | 3172 \sim 1094 \cong 1090 | 3214 \sim 852 \cong 852$ $3089 \sim 1091 \cong 731 | 3131 \sim 840 \cong 840 | 3173 \sim 1094 \cong 1090 | 3215 \sim 861 \cong 861$ $3090 \sim 939 \cong 939 | 3132 \sim 741 \cong 741 | 3174 \sim 861 \cong 861 | 3216 \sim 843 \cong 843$ $3091 \sim 1091 \cong 731 | 3133 \sim 848 \cong 750 | 3175 \sim 960 \cong 960 | 3217 \sim 879 \cong 879$ $3092 \sim 1091 \cong 731 | 3134 \sim 857 \cong 857 | 3176 \sim 879 \cong 879 | 3218 \sim 888 \cong 888$ $3093 \sim 858 \cong 858 | 3135 \sim 839 \cong 821 | 3177 \sim 780 \cong 780 | 3219 \sim 870 \cong 870$ $3094 \sim 957 \cong 957 | 3136 \sim 875 \cong 875 | 3178 \sim 852 \cong 852 | 3220 \sim 824 \cong 820$ $3095 \sim 876 \cong 876 | 3137 \sim 884 \cong 884 | 3179 \sim 879 \cong 879 | 3221 \sim 824 \cong 820$ $3096 \sim 777 \cong 777 | 3138 \sim 866 \cong 866 | 3180 \sim 824 \cong 820 | 3222 \sim 753 \cong 753$ $3097 \sim 848 \cong 750 | 3139 \sim 821 \cong 821 | 3181 \sim 861 \cong 861 | 3223 \sim 933 \cong 849$ $3098 \sim 875 \cong 875 | 3140 \sim 821 \cong 821 | 3182 \sim 888 \cong 888 | 3224 \sim 942 \cong 942$ $3099 \sim 821 \cong 821 \ | 3141 \sim 750 \cong 750 \ | 3183 \sim 824 \cong 820 \ | 3225 \sim 924 \cong 870$ $3100 \sim 857 \cong 857 | 3142 \sim 929 \cong 929 | 3184 \sim 843 \cong 843 | 3226 \sim 960 \cong 960$ $3101 \sim 884 \cong 884 | 3143 \sim 938 \cong 938 | 3185 \sim 870 \cong 870 | 3227 \sim 969 \cong 969$ $3102 \sim 821 \cong 821 | 3144 \sim 920 \cong 920 | 3186 \sim 753 \cong 753 | 3228 \sim 843 \cong 843$ $3103 \sim 839 \cong 821 | 3145 \sim 956 \cong 956 | 3187 \sim 1094 \cong 1090 | 3229 \sim 824 \cong 820$

 $3230 \sim 824 \cong 820 | 3272 \sim 1094 \cong 1090 | 3314 \sim 783 \cong 775 | 3356 \sim 857 \cong 857$ $3231 \sim 744 \cong 744 \mid 3273 \sim 878 \cong 878 \mid 3315 \sim 747 \cong 739 \mid 3357 \sim 776 \cong 776$ $3232 \sim 771 \cong 771 | 3274 \sim 941 \cong 941 | 3316 \sim 783 \cong 775 | 3358 \sim 1091 \cong 731$ $3233 \sim 780 \cong 780 | 3275 \sim 860 \cong 860 | 3317 \sim 810 \cong 802 | 3359 \sim 1091 \cong 731$ $3234 \sim 744 \cong 744 | 3276 \sim 779 \cong 779 | 3318 \sim 756 \cong 748 | 3360 \sim 929 \cong 929$ $3235 \sim 780 \cong 780 | 3277 \sim 1094 \cong 1090 | 3319 \sim 747 \cong 739 | 3361 \sim 1091 \cong 731$ $3236 \sim 807 \cong 771 | 3278 \sim 1094 \cong 1090 | 3320 \sim 756 \cong 748 | 3362 \sim 1091 \cong 731$ $3237 \sim 753 \cong 753 | 3279 \sim 932 \cong 820 | 3321 \sim 734 \cong 730 | 3363 \sim 848 \cong 750$ $3238 \sim 744 \cong 744 \mid 3280 \sim 1094 \cong 1090 \mid 3322 \sim 1091 \cong 731 \mid 3364 \sim 929 \cong 929$ $3239 \sim 753 \cong 753 | 3281 \sim 1094 \cong 1090 | 3323 \sim 1091 \cong 731 | 3365 \sim 848 \cong 750$ $3240 \sim 734 \cong 730 | 3282 \sim 851 \cong 847 | 3324 \sim 965 \cong 965 | 3366 \sim 767 \cong 731$ $3241 \sim 1094 \cong 1090 | 3283 \sim 932 \cong 820 | 3325 \sim 1091 \cong 731 | 3367 \sim 930 \cong 821$ $3242 \sim 1094 \cong 1090 | 3284 \sim 851 \cong 847 | 3326 \sim 1091 \cong 731 | 3368 \sim 957 \cong 957$ $3243 \sim 968 \cong 968 \mid 3285 \sim 770 \cong 730 \mid 3327 \sim 884 \cong 884 \mid 3369 \sim 821 \cong 821$ $3244 \sim 1094 \cong 1090 | 3286 \sim 936 \cong 820 | 3328 \sim 965 \cong 965 | 3370 \sim 939 \cong 939$ $3245 \sim 1094 \cong 1090 | 3287 \sim 963 \cong 963 | 3329 \sim 884 \cong 884 | 3371 \sim 966 \cong 966$ $3246 \sim 887 \cong 887 | 3288 \sim 824 \cong 820 | 3330 \sim 803 \cong 771 | 3372 \sim 821 \cong 821$ $3247 \sim 968 \cong 968 | 3289 \sim 945 \cong 941 | 3331 \sim 1091 \cong 731 | 3373 \sim 920 \cong 920$ $3248 \sim 887 \cong 887 | 3290 \sim 972 \cong 739 | 3332 \sim 1091 \cong 731 | 3374 \sim 839 \cong 821$ $3249 \sim 806 \cong 802 | 3291 \sim 824 \cong 820 | 3333 \sim 938 \cong 938 | 3375 \sim 740 \cong 740$ $3250 \sim 1094 \cong 1090 | 3292 \sim 923 \cong 923 | 3334 \sim 1091 \cong 731 | 3376 \sim 849 \cong 849$ $3251 \sim 1094 \cong 1090 | 3293 \sim 842 \cong 838 | 3335 \sim 1091 \cong 731 | 3377 \sim 858 \cong 858$ $3252 \sim 941 \cong 941 \mid 3294 \sim 743 \cong 739 \mid 3336 \sim 857 \cong 857 \mid 3378 \sim 840 \cong 840$ $3253 \sim 1094 \cong 1090 | 3295 \sim 855 \cong 847 | 3337 \sim 956 \cong 956 | 3379 \sim 876 \cong 876$ $3254 \sim 1094 \cong 1090 | 3296 \sim 864 \cong 864 | 3338 \sim 875 \cong 875 | 3380 \sim 885 \cong 885$ $3255 \sim 860 \cong 860 | 3297 \sim 846 \cong 846 | 3339 \sim 776 \cong 776 | 3381 \sim 866 \cong 866$ $3256 \sim 959 \cong 959 | 3298 \sim 882 \cong 882 | 3340 \sim 849 \cong 849 | 3382 \sim 821 \cong 821$ $3257 \sim 878 \cong 878 | 3299 \sim 891 \cong 891 | 3341 \sim 876 \cong 876 | 3383 \sim 821 \cong 821$ $3258 \sim 779 \cong 779 \mid 3300 \sim 869 \cong 869 \mid 3342 \sim 821 \cong 821 \mid 3384 \sim 749 \cong 749$ $3259 \sim 855 \cong 847 | 3301 \sim 824 \cong 820 | 3343 \sim 858 \cong 858 | 3385 \sim 930 \cong 821$ $3260 \sim 882 \cong 882 \mid 3302 \sim 824 \cong 820 \mid 3344 \sim 885 \cong 885 \mid 3386 \sim 939 \cong 939$ $3261 \sim 824 \cong 820 | 3303 \sim 752 \cong 752 | 3345 \sim 821 \cong 821 | 3387 \sim 920 \cong 920$ $3262 \sim 864 \cong 864 \mid 3304 \sim 936 \cong 820 \mid 3346 \sim 840 \cong 840 \mid 3388 \sim 957 \cong 957$ $3263 \sim 891 \cong 891 \mid 3305 \sim 945 \cong 941 \mid 3347 \sim 866 \cong 866 \mid 3389 \sim 966 \cong 966$ $3264 \sim 824 \cong 820 | 3306 \sim 923 \cong 923 | 3348 \sim 749 \cong 749 | 3390 \sim 839 \cong 821$ $3265 \sim 846 \cong 846 \mid 3307 \sim 963 \cong 963 \mid 3349 \sim 1091 \cong 731 \mid 3391 \sim 821 \cong 821$ $3266 \sim 869 \cong 869 | 3308 \sim 972 \cong 739 | 3350 \sim 1091 \cong 731 | 3392 \sim 821 \cong 821$ $3267 \sim 752 \cong 752 \mid 3309 \sim 842 \cong 838 \mid 3351 \sim 956 \cong 956 \mid 3393 \sim 740 \cong 740$ $3268 \sim 1094 \cong 1090 \mid 3310 \sim 824 \cong 820 \mid 3352 \sim 1091 \cong 731 \mid 3394 \sim 768 \cong 731$ $3269 \sim 1094 \cong 1090 | 3311 \sim 824 \cong 820 | 3353 \sim 1091 \cong 731 | 3395 \sim 777 \cong 777$ $3270 \sim 959 \cong 959 \ | 3312 \sim 743 \cong 739 \ | 3354 \sim 875 \cong 875 \ | 3396 \sim 741 \cong 741$ $3271 \sim 1094 \cong 1090 | 3313 \sim 774 \cong 730 | 3355 \sim 938 \cong 938 | 3397 \sim 777 \cong 777$ $3398 \sim 804 \cong 731 | 3440 \sim 1091 \cong 731 | 3482 \sim 749 \cong 749 | 3524 \sim 1091 \cong 731$ $3399 \sim 750 \cong 750 | 3441 \sim 930 \cong 821 | 3483 \sim 731 \cong 731 | 3525 \sim 848 \cong 750$ $3400 \sim 741 \cong 741 | 3442 \sim 1091 \cong 731 | 3484 \sim 1091 \cong 731 | 3526 \sim 929 \cong 929$ $3401 \sim 750 \cong 750 | 3443 \sim 1091 \cong 731 | 3485 \sim 1091 \cong 731 | 3527 \sim 848 \cong 750$ $3402 \sim 731 \cong 731 | 3444 \sim 849 \cong 849 | 3486 \sim 965 \cong 965 | 3528 \sim 767 \cong 731$ $3403 \sim 1091 \cong 731 \mid 3445 \sim 930 \cong 821 \mid 3487 \sim 1091 \cong 731 \mid 3529 \sim 930 \cong 821$ $3404 \sim 1091 \cong 731 \ | \ 3446 \sim 849 \cong 849 \ | \ 3488 \sim 1091 \cong 731 \ | \ 3530 \sim 957 \cong 957$ $3405 \sim 966 \cong 966 \mid 3447 \sim 768 \cong 731 \mid 3489 \sim 884 \cong 884 \mid 3531 \sim 821 \cong 821$ $3406 \sim 1091 \cong 731 | 3448 \sim 929 \cong 929 | 3490 \sim 965 \cong 965 | 3532 \sim 939 \cong 939$ $3407 \sim 1091 \cong 731 \mid 3449 \sim 956 \cong 956 \mid 3491 \sim 884 \cong 884 \mid 3533 \sim 966 \cong 966$ $3408 \sim 885 \cong 885 \mid 3450 \sim 821 \cong 821 \mid 3492 \sim 803 \cong 771 \mid 3534 \sim 821 \cong 821$ $3409 \sim 966 \cong 966 | 3451 \sim 938 \cong 938 | 3493 \sim 1091 \cong 731 | 3535 \sim 920 \cong 920$ $3410 \sim 885 \cong 885 | 3452 \sim 965 \cong 965 | 3494 \sim 1091 \cong 731 | 3536 \sim 839 \cong 821$ $3411 \sim 804 \cong 731 \mid 3453 \sim 821 \cong 821 \mid 3495 \sim 938 \cong 938 \mid 3537 \sim 740 \cong 740$ $3412 \sim 1091 \cong 731 \mid 3454 \sim 920 \cong 920 \mid 3496 \sim 1091 \cong 731 \mid 3538 \sim 849 \cong 849$ $3413 \sim 1091 \cong 731 \mid 3455 \sim 840 \cong 840 \mid 3497 \sim 1091 \cong 731 \mid 3539 \sim 858 \cong 858$ $3414 \sim 939 \cong 939 | 3456 \sim 741 \cong 741 | 3498 \sim 857 \cong 857 | 3540 \sim 840 \cong 840$ $3415 \sim 1091 \cong 731 | 3457 \sim 848 \cong 750 | 3499 \sim 956 \cong 956 | 3541 \sim 876 \cong 876$ $3416 \sim 1091 \cong 731 \mid 3458 \sim 857 \cong 857 \mid 3500 \sim 875 \cong 875 \mid 3542 \sim 885 \cong 885$ $3417 \sim 858 \cong 858 | 3459 \sim 839 \cong 821 | 3501 \sim 776 \cong 776 | 3543 \sim 866 \cong 866$ $3418 \sim 957 \cong 957 | 3460 \sim 875 \cong 875 | 3502 \sim 849 \cong 849 | 3544 \sim 821 \cong 821$ $3419 \sim 876 \cong 876 | 3461 \sim 884 \cong 884 | 3503 \sim 876 \cong 876 | 3545 \sim 821 \cong 821$ $3420 \sim 777 \cong 777 | 3462 \sim 866 \cong 866 | 3504 \sim 821 \cong 821 | 3546 \sim 749 \cong 749$ $3421 \sim 848 \cong 750 | 3463 \sim 821 \cong 821 | 3505 \sim 858 \cong 858 | 3547 \sim 930 \cong 821$ $3422 \sim 875 \cong 875 | 3464 \sim 821 \cong 821 | 3506 \sim 885 \cong 885 | 3548 \sim 939 \cong 939$ $3423 \sim 821 \cong 821 | 3465 \sim 750 \cong 750 | 3507 \sim 821 \cong 821 | 3549 \sim 920 \cong 920$ $3424 \sim 857 \cong 857 | 3466 \sim 929 \cong 929 | 3508 \sim 840 \cong 840 | 3550 \sim 957 \cong 957$ $3425 \sim 884 \cong 884 | 3467 \sim 938 \cong 938 | 3509 \sim 866 \cong 866 | 3551 \sim 966 \cong 966$ $3426 \sim 821 \cong 821 | 3468 \sim 920 \cong 920 | 3510 \sim 749 \cong 749 | 3552 \sim 839 \cong 821$ $3427 \sim 839 \cong 821 | 3469 \sim 956 \cong 956 | 3511 \sim 1091 \cong 731 | 3553 \sim 821 \cong 821$ $3428 \sim 866 \cong 866 | 3470 \sim 965 \cong 965 | 3512 \sim 1091 \cong 731 | 3554 \sim 821 \cong 821$ $3429 \sim 750 \cong 750 | 3471 \sim 840 \cong 840 | 3513 \sim 956 \cong 956 | 3555 \sim 740 \cong 740$ $3430 \sim 1091 \cong 731 | 3472 \sim 821 \cong 821 | 3514 \sim 1091 \cong 731 | 3556 \sim 768 \cong 731$ $3431 \sim 1091 \cong 731 \mid 3473 \sim 821 \cong 821 \mid 3515 \sim 1091 \cong 731 \mid 3557 \sim 777 \cong 777$ $3432 \sim 957 \cong 957 | 3474 \sim 741 \cong 741 | 3516 \sim 875 \cong 875 | 3558 \sim 741 \cong 741$ $3433 \sim 1091 \cong 731 \mid 3475 \sim 767 \cong 731 \mid 3517 \sim 938 \cong 938 \mid 3559 \sim 777 \cong 777$ $3434 \sim 1091 \cong 731 | 3476 \sim 776 \cong 776 | 3518 \sim 857 \cong 857 | 3560 \sim 804 \cong 731$ $3435 \sim 876 \cong 876 | 3477 \sim 740 \cong 740 | 3519 \sim 776 \cong 776 | 3561 \sim 750 \cong 750$ $3436 \sim 939 \cong 939 \ | 3478 \sim 776 \cong 776 \ | 3520 \sim 1091 \cong 731 \ | 3562 \sim 741 \cong 741$ $3437 \sim 858 \cong 858 \ 3479 \sim 803 \cong 771 \ 3521 \sim 1091 \cong 731 \ 3563 \sim 750 \cong 750$ $3438 \sim 777 \cong 777 | 3480 \sim 749 \cong 749 | 3522 \sim 929 \cong 929 | 3564 \sim 731 \cong 731$ $3439 \sim 1091 \cong 731 | 3481 \sim 740 \cong 740 | 3523 \sim 1091 \cong 731 | 3565 \sim 1090 \cong 1090$

 $3566 \sim 1090 \cong 1090 | 3608 \sim 847 \cong 847 | 3650 \sim 2196 \cong 802 | 3692 \sim 2399 \cong 2399$ $3567 \sim 964 \cong 739 | 3609 \sim 766 \cong 730 | 3651 \sim 2193 \cong 2193 | 3693 \sim 820 \cong 820$ $3568 \sim 1090 \cong 1090 | 3610 \sim 928 \cong 820 | 3652 \sim 730 \cong 730 | 3694 \sim 2399 \cong 2399$ $3569 \sim 1090 \cong 1090 | 3611 \sim 955 \cong 937 | 3653 \sim 2193 \cong 2193 | 3695 \sim 2426 \cong 2277$ $3570 \sim 883 \cong 883 | 3612 \sim 820 \cong 820 | 3654 \sim 730 \cong 730 | 3696 \sim 2372 \cong 2372$ $3571 \sim 964 \cong 739 \ | 3613 \sim 937 \cong 937 \ | 3655 \sim 820 \cong 820 \ | 3697 \sim 820 \cong 820$ $3572 \sim 883 \cong 883 | 3614 \sim 964 \cong 739 | 3656 \sim 2352 \cong 740 | 3698 \sim 2372 \cong 2372$ $3573 \sim 802 \cong 802 | 3615 \sim 820 \cong 820$ $|3657 \sim 820 \cong 820 | 3699 \sim 820 \cong 820$ $3574 \sim 1090 \cong 1090 | 3616 \sim 919 \cong 820 | 3658 \sim 2352 \cong 740 | 3700 \sim 730 \cong 730$ $3575 \sim 1090 \cong 1090 | 3617 \sim 838 \cong 838 | 3659 \sim 2358 \cong 820 | 3701 \sim 2271 \cong 2271$ $3576 \sim 937 \cong 937 | 3618 \sim 739 \cong 739 | 3660 \sim 2355 \cong 2355 | 3702 \sim 730 \cong 730$ $3577 \sim 1090 \cong 1090 | 3619 \sim 847 \cong 847 | 3661 \sim 820 \cong 820 | 3703 \sim 2271 \cong 2271$ $3578 \sim 1090 \cong 1090 | 3620 \sim 856 \cong 856 | 3662 \sim 2355 \cong 2355 | 3704 \sim 2277 \cong 2277$ $3579 \sim 856 \cong 856 | 3621 \sim 838 \cong 838 | 3663 \sim 820 \cong 820 | 3705 \sim 2274 \cong 2274$ $3580 \sim 955 \cong 937 \ | 3622 \sim 874 \cong 874 \ | 3664 \sim 730 \cong 730 \ | 3706 \sim 730 \cong 730$ $3581 \sim 874 \cong 874 | 3623 \sim 883 \cong 883 | 3665 \sim 2271 \cong 2271 | 3707 \sim 2274 \cong 2274$ $3582 \sim 775 \cong 775 | 3624 \sim 865 \cong 820 | 3666 \sim 730 \cong 730 | 3708 \sim 730 \cong 730$ $3583 \sim 847 \cong 847 | 3625 \sim 820 \cong 820 | 3667 \sim 2271 \cong 2271 | 3709 \sim 820 \cong 820$ $3584 \sim 874 \cong 874 | 3626 \sim 820 \cong 820 | 3668 \sim 2277 \cong 2277 | 3710 \sim 2399 \cong 2399$ $3585 \sim 820 \cong 820 | 3627 \sim 748 \cong 748 | 3669 \sim 2274 \cong 2274 | 3711 \sim 820 \cong 820$ $3586 \sim 856 \cong 856 | 3628 \sim 928 \cong 820 | 3670 \sim 730 \cong 730 | 3712 \sim 2399 \cong 2399$ $3587 \sim 883 \cong 883 | 3629 \sim 937 \cong 937 | 3671 \sim 2274 \cong 2274 | 3713 \sim 2426 \cong 2277$ $3588 \sim 820 \cong 820 | 3630 \sim 919 \cong 820 | 3672 \sim 730 \cong 730 | 3714 \sim 2372 \cong 2372$ $3589 \sim 838 \cong 838 \mid 3631 \sim 955 \cong 937 \mid 3673 \sim 820 \cong 820 \mid 3715 \sim 820 \cong 820$ $3590 \sim 865 \cong 820 | 3632 \sim 964 \cong 739 | 3674 \sim 2352 \cong 740 | 3716 \sim 2372 \cong 2372$ $3591 \sim 748 \cong 748 \mid 3633 \sim 838 \cong 838 \mid 3675 \sim 820 \cong 820 \mid 3717 \sim 820 \cong 820$ $3592 \sim 1090 \cong 1090 | 3634 \sim 820 \cong 820 | 3676 \sim 2352 \cong 740 | 3718 \sim 730 \cong 730$ $3593 \sim 1090 \cong 1090 | 3635 \sim 820 \cong 820 | 3677 \sim 2358 \cong 820 | 3719 \sim 2237 \cong 2237$ $3594 \sim 955 \cong 937 | 3636 \sim 739 \cong 739 | 3678 \sim 2355 \cong 2355 | 3720 \sim 730 \cong 730$ $3595 \sim 1090 \cong 1090 | 3637 \sim 766 \cong 730 | 3679 \sim 820 \cong 820 | 3721 \sim 2237 \cong 2237$ $3596 \sim 1090 \cong 1090 \mid 3638 \sim 775 \cong 775 \mid 3680 \sim 2355 \cong 2355 \mid 3722 \sim 2264 \cong 730$ $3597 \sim 874 \cong 874 | 3639 \sim 739 \cong 739 | 3681 \sim 820 \cong 820 | 3723 \sim 2210 \cong 2210$ $3598 \sim 937 \cong 937 | 3640 \sim 775 \cong 775 | 3682 \sim 1090 \cong 1090 | 3724 \sim 730 \cong 730$ $3599 \sim 856 \cong 856 | 3641 \sim 802 \cong 802 | 3683 \sim 2838 \cong 750 | 3725 \sim 2210 \cong 2210$ $3600 \sim 775 \cong 775 | 3642 \sim 748 \cong 748 | 3684 \sim 1090 \cong 1090 | 3726 \sim 730 \cong 730$ $3601 \sim 1090 \cong 1090 | 3643 \sim 739 \cong 739 | 3685 \sim 2838 \cong 750 | 3727 \sim 2206 \cong 748$ $3602 \sim 1090 \cong 1090 | 3644 \sim 748 \cong 748 | 3686 \sim 2844 \cong 730 | 3728 \sim 731 \cong 731$ $3603 \sim 928 \cong 820 | 3645 \sim 730 \cong 730 | 3687 \sim 2841 \cong 2841 | 3729 \sim 2207 \cong 2207$ $3604 \sim 1090 \cong 1090 | 3646 \sim 730 \cong 730 | 3688 \sim 1090 \cong 1090 | 3730 \sim 2212 \cong 2212$ $3605 \sim 1090 \cong 1090 | 3647 \sim 2190 \cong 750 | 3689 \sim 2841 \cong 2841 | 3731 \sim 2214 \cong 748$ $3606 \sim 847 \cong 847 | 3648 \sim 730 \cong 730 | 3690 \sim 1090 \cong 1090 | 3732 \sim 2213 \cong 2213$ $3607 \sim 928 \cong 820 | 3649 \sim 2190 \cong 750 | 3691 \sim 820 \cong 820 | 3733 \sim 2209 \cong 2209$ $3734 \sim 731 \cong 731 | 3776 \sim 2427 \cong 2427 | 3818 \sim 2361 \cong 2361 | 3860 \sim 2371 \cong 2371$ $3735 \sim 2210 \cong 2210 | 3777 \sim 2375 \cong 2375 | 3819 \sim 820 \cong 820 | 3861 \sim 820 \cong 820$ $3736 \sim 2368 \cong 739 | 3778 \sim 2364 \cong 2364 | 3820 \sim 2365 \cong 2365 | 3862 \sim 730 \cong 730$ $3737 \sim 821 \cong 821 | 3779 \sim 821 \cong 821 | 3821 \sim 2367 \cong 2367 | 3863 \sim 2280 \cong 2280$ $3738 \sim 2369 \cong 2369 | 3780 \sim 2355 \cong 2355 | 3822 \sim 2366 \cong 2366 | 3864 \sim 730 \cong 730$ $3739 \sim 2374 \cong 821 | 3781 \sim 2287 \cong 2287 | 3823 \sim 820 \cong 820 | 3865 \sim 2284 \cong 2284$ $3740 \sim 2376 \cong 739 \, | \, 3782 \sim 731 \cong 731 \, | \, 3824 \sim 2364 \cong 2364 \, | \, 3866 \sim 2286 \cong 2286$ $3741 \sim 2375 \cong 2375 | 3783 \sim 2285 \cong 2285 | 3825 \sim 820 \cong 820 | 3867 \sim 2285 \cong 2285$ $3742 \sim 2371 \cong 2371 | 3784 \sim 2293 \cong 2293 | 3826 \sim 730 \cong 730 | 3868 \sim 730 \cong 730$ $3743 \sim 821 \cong 821 | 3785 \sim 2295 \cong 2295 | 3827 \sim 2280 \cong 2280 | 3869 \sim 2283 \cong 2283$ $3744 \sim 2372 \cong 2372 | 3786 \sim 2294 \cong 2294 | 3828 \sim 730 \cong 730 | 3870 \sim 730 \cong 730$ $3745 \sim 2287 \cong 2287 | 3787 \sim 2283 \cong 2283 | 3829 \sim 2284 \cong 2284 | 3871 \sim 820 \cong 820$ $3746 \sim 731 \cong 731 | 3788 \sim 731 \cong 731 | 3830 \sim 2286 \cong 2286 | 3872 \sim 2398 \cong 2398$ $3747 \sim 2285 \cong 2285 | 3789 \sim 2274 \cong 2274 | 3831 \sim 2285 \cong 2285 | 3873 \sim 820 \cong 820$ $3748 \sim 2293 \cong 2293 | 3790 \sim 2391 \cong 2391 | 3832 \sim 730 \cong 730 | 3874 \sim 2396 \cong 2396$ $3749 \sim 2295 \cong 2295 | 3791 \sim 821 \cong 821 | 3833 \sim 2283 \cong 2283 | 3875 \sim 2423 \cong 2423$ $3750 \sim 2294 \cong 2294 | 3792 \sim 2366 \cong 2366 | 3834 \sim 730 \cong 730 | 3876 \sim 2369 \cong 2369$ $3751 \sim 2283 \cong 2283 | 3793 \sim 2402 \cong 2402 | 3835 \sim 820 \cong 820 | 3877 \sim 820 \cong 820$ $3752 \sim 731 \cong 731 | 3794 \sim 2427 \cong 2427 | 3836 \sim 2361 \cong 2361 | 3878 \sim 2371 \cong 2371$ $3753 \sim 2274 \cong 2274 \ | \ 3795 \sim 2375 \cong 2375 \ | \ 3837 \sim 820 \cong 820 \ | \ 3879 \sim 820 \cong 820$ $3754 \sim 2368 \cong 739 | 3796 \sim 2364 \cong 2364 | 3838 \sim 2365 \cong 2365 | 3880 \sim 730 \cong 730$ $3755 \sim 821 \cong 821 | 3797 \sim 821 \cong 821 | 3839 \sim 2367 \cong 2367 | 3881 \sim 2236 \cong 2236$ $3756 \sim 2369 \cong 2369 | 3798 \sim 2355 \cong 2355 | 3840 \sim 2366 \cong 2366 | 3882 \sim 730 \cong 730$ $3757 \sim 2374 \cong 821 | 3799 \sim 2229 \cong 2229 | 3841 \sim 820 \cong 820 | 3883 \sim 2234 \cong 2234$ $3758 \sim 2376 \cong 739 \mid 3800 \sim 731 \cong 731 \mid 3842 \sim 2364 \cong 2364 \mid 3884 \sim 2261 \cong 2261$ $3759 \sim 2375 \cong 2375 | 3801 \sim 2204 \cong 2204 | 3843 \sim 820 \cong 820 | 3885 \sim 2207 \cong 2207$ $3760 \sim 2371 \cong 2371 | 3802 \sim 2240 \cong 2240 | 3844 \sim 1090 \cong 1090 | 3886 \sim 730 \cong 730$ $3761 \sim 821 \cong 821 | 3803 \sim 2265 \cong 2265 | 3845 \sim 2847 \cong 929 | 3887 \sim 2209 \cong 2209$ $3762 \sim 2372 \cong 2372 | 3804 \sim 2213 \cong 2213 | 3846 \sim 1090 \cong 1090 | 3888 \sim 730 \cong 730$ $3763 \sim 2854 \cong 847 \ | 3805 \sim 2202 \cong 2202 \ | 3847 \sim 2851 \cong 929 \ | 3889 \sim 2206 \cong 748$ $3764 \sim 1091 \cong 731 \mid 3806 \sim 731 \cong 731 \mid 3848 \sim 2853 \cong 2853 \mid 3890 \sim 2212 \cong 2212$ $3765 \sim 2852 \cong 849 | 3807 \sim 2193 \cong 2193 | 3849 \sim 2852 \cong 849 | 3891 \sim 2209 \cong 2209$ $3766 \sim 2860 \cong 2212 | 3808 \sim 730 \cong 730 | 3850 \sim 1090 \cong 1090 | 3892 \sim 731 \cong 731$ $3767 \sim 2862 \cong 847 | 3809 \sim 2199 \cong 2199 | 3851 \sim 2850 \cong 2850 | 3893 \sim 2214 \cong 748$ $3768 \sim 2861 \cong 731 | 3810 \sim 730 \cong 730 | 3852 \sim 1090 \cong 1090 | 3894 \sim 731 \cong 731$ $3769 \sim 2850 \cong 2850 | 3811 \sim 2203 \cong 2203 | 3853 \sim 820 \cong 820 | 3895 \sim 2207 \cong 2207$ $3770 \sim 1091 \cong 731 | 3812 \sim 2205 \cong 775 | 3854 \sim 2398 \cong 2398 | 3896 \sim 2213 \cong 2213$ $3771 \sim 2841 \cong 2841 | 3813 \sim 2204 \cong 2204 | 3855 \sim 820 \cong 820 | 3897 \sim 2210 \cong 2210$ $3772 \sim 2391 \cong 2391 \ | 3814 \sim 730 \cong 730 \ | 3856 \sim 2396 \cong 2396 \ | 3898 \sim 2368 \cong 739$ $3773 \sim 821 \cong 821 \ | 3815 \sim 2202 \cong 2202 \ | 3857 \sim 2423 \cong 2423 \ | 3899 \sim 2374 \cong 821$ $3774 \sim 2366 \cong 2366 \mid 3816 \sim 730 \cong 730 \mid 3858 \sim 2369 \cong 2369 \mid 3900 \sim 2371 \cong 2371$ $3775 \sim 2402 \cong 2402 | 3817 \sim 820 \cong 820 | 3859 \sim 820 \cong 820 | 3901 \sim 821 \cong 821$

 $3902 \sim 2376 \cong 739 | 3944 \sim 2293 \cong 2293 | 3986 \sim 2427 \cong 2427 | 4028 \sim 734 \cong 730$ $3903 \sim 821 \cong 821 \mid 3945 \sim 2283 \cong 2283 \mid 3987 \sim 2426 \cong 2277 \mid 4029 \sim 2295 \cong 2295$ $3904 \sim 2369 \cong 2369 \mid 3946 \sim 731 \cong 731 \mid 3988 \sim 2313 \cong 2277 \mid 4030 \sim 2286 \cong 2286$ $3905 \sim 2375 \cong 2375 | 3947 \sim 2295 \cong 2295 | 3989 \sim 2322 \cong 2322 | 4031 \sim 2295 \cong 2295$ $3906 \sim 2372 \cong 2372 \mid 3948 \sim 731 \cong 731 \mid 3990 \sim 2286 \cong 2286 \mid 4032 \sim 2277 \cong 2277$ $3907 \sim 2287 \cong 2287 \mid 3949 \sim 2285 \cong 2285 \mid 3991 \sim 2322 \cong 2322 \mid 4033 \sim 2394 \cong 820$ $3908 \sim 2293 \cong 2293 | 3950 \sim 2294 \cong 2294 | 3992 \sim 734 \cong 730 | 4034 \sim 2403 \cong 2287$ $3909 \sim 2283 \cong 2283 \mid 3951 \sim 2274 \cong 2274 \mid 3993 \sim 2295 \cong 2295 \mid 4035 \sim 2367 \cong 2367$ $3910 \sim 731 \cong 731 \mid 3952 \sim 2391 \cong 2391 \mid 3994 \sim 2286 \cong 2286 \mid 4036 \sim 2403 \cong 2287$ $3911 \sim 2295 \cong 2295 \mid 3953 \sim 2402 \cong 2402 \mid 3995 \sim 2295 \cong 2295 \mid 4037 \sim 824 \cong 820$ $3912 \sim 731 \cong 731 \mid 3954 \sim 2364 \cong 2364 \mid 3996 \sim 2277 \cong 2277 \mid 4038 \sim 2376 \cong 739$ $3913 \sim 2285 \cong 2285 \mid 3955 \sim 821 \cong 821 \mid 3997 \sim 2422 \cong 820 \mid 4039 \sim 2367 \cong 2367$ $3914 \sim 2294 \cong 2294 \mid 3956 \sim 2427 \cong 2427 \mid 3998 \sim 2424 \cong 966 \mid 4040 \sim 2376 \cong 739$ $3915 \sim 2274 \cong 2274 \mid 3957 \sim 821 \cong 821 \mid 3999 \sim 2423 \cong 2423 \mid 4041 \sim 2358 \cong 820$ $3916 \sim 2368 \cong 739 | 3958 \sim 2366 \cong 2366 | 4000 \sim 2424 \cong 966 | 4042 \sim 2232 \cong 730$ $3917 \sim 2374 \cong 821 \mid 3959 \sim 2375 \cong 2375 \mid 4001 \sim 824 \cong 820 \mid 4043 \sim 2241 \cong 739$ $3918 \sim 2371 \cong 2371 \mid 3960 \sim 2355 \cong 2355 \mid 4002 \sim 2427 \cong 2427 \mid 4044 \sim 2205 \cong 775$ $3919 \sim 821 \cong 821 | 3961 \sim 2229 \cong 2229 | 4003 \sim 2423 \cong 2423 | 4045 \sim 2241 \cong 739$ $3920 \sim 2376 \cong 739 | 3962 \sim 2240 \cong 2240 | 4004 \sim 2427 \cong 2427 | 4046 \sim 734 \cong 730$ $3921 \sim 821 \cong 821 \mid 3963 \sim 2202 \cong 2202 \mid 4005 \sim 2426 \cong 2277 \mid 4047 \sim 2214 \cong 748$ $3922 \sim 2369 \cong 2369 \mid 3964 \sim 731 \cong 731 \mid 4006 \sim 2880 \cong 730 \mid 4048 \sim 2205 \cong 775$ $3923 \sim 2375 \cong 2375 \mid 3965 \sim 2265 \cong 2265 \mid 4007 \sim 2889 \cong 750 \mid 4049 \sim 2214 \cong 748$ $3924 \sim 2372 \cong 2372 \mid 3966 \sim 731 \cong 731 \mid 4008 \sim 2853 \cong 2853 \mid 4050 \sim 2196 \cong 802$ $3925 \sim 2854 \cong 847 | 3967 \sim 2204 \cong 2204 | 4009 \sim 2889 \cong 750 | 4051 \sim 2233 \cong 2233$ $3926 \sim 2860 \cong 2212 \mid 3968 \sim 2213 \cong 2213 \mid 4010 \sim 1094 \cong 1090 \mid 4052 \sim 2239 \cong 2239$ $3927 \sim 2850 \cong 2850 | 3969 \sim 2193 \cong 2193 | 4011 \sim 2862 \cong 847 | 4053 \sim 2236 \cong 2236$ $3928 \sim 1091 \cong 731 \mid 3970 \sim 2260 \cong 802 \mid 4012 \sim 2853 \cong 2853 \mid 4054 \sim 731 \cong 731$ $3929 \sim 2862 \cong 847 | 3971 \sim 2262 \cong 750 | 4013 \sim 2862 \cong 847 | 4055 \sim 2241 \cong 739$ $3930 \sim 1091 \cong 731 | 3972 \sim 2261 \cong 2261 | 4014 \sim 2844 \cong 730 | 4056 \sim 731 \cong 731$ $3931 \sim 2852 \cong 849 | 3973 \sim 2262 \cong 750 | 4015 \sim 2394 \cong 820 | 4057 \sim 2234 \cong 2234$ $3932 \sim 2861 \cong 731 | 3974 \sim 734 \cong 730 | 4016 \sim 2403 \cong 2287 | 4058 \sim 2240 \cong 2240$ $3933 \sim 2841 \cong 2841 \mid 3975 \sim 2265 \cong 2265 \mid 4017 \sim 2367 \cong 2367 \mid 4059 \sim 2237 \cong 2237$ $3934 \sim 2391 \cong 2391 \mid 3976 \sim 2261 \cong 2261 \mid 4018 \sim 2403 \cong 2287 \mid 4060 \sim 2395 \cong 2395$ $3935 \sim 2402 \cong 2402 \mid 3977 \sim 2265 \cong 2265 \mid 4019 \sim 824 \cong 820 \mid 4061 \sim 2401 \cong 2401$ $3936 \sim 2364 \cong 2364 | 3978 \sim 2264 \cong 730 | 4020 \sim 2376 \cong 739 | 4062 \sim 2398 \cong 2398$ $3937 \sim 821 \cong 821 | 3979 \sim 2422 \cong 820 | 4021 \sim 2367 \cong 2367 | 4063 \sim 821 \cong 821$ $3938 \sim 2427 \cong 2427 \mid 3980 \sim 2424 \cong 966 \mid 4022 \sim 2376 \cong 739 \mid 4064 \sim 2403 \cong 2287$ $3939 \sim 821 \cong 821 \mid 3981 \sim 2423 \cong 2423 \mid 4023 \sim 2358 \cong 820 \mid 4065 \sim 821 \cong 821$ $3940 \sim 2366 \cong 2366 \mid 3982 \sim 2424 \cong 966 \mid 4024 \sim 2313 \cong 2277 \mid 4066 \sim 2396 \cong 2396$ $3941 \sim 2375 \cong 2375 \mid 3983 \sim 824 \cong 820 \mid 4025 \sim 2322 \cong 2322 \mid 4067 \sim 2402 \cong 2402$ $3942 \sim 2355 \cong 2355 \mid 3984 \sim 2427 \cong 2427 \mid 4026 \sim 2286 \cong 2286 \mid 4068 \sim 2399 \cong 2399$ $3943 \sim 2287 \cong 2287 | 3985 \sim 2423 \cong 2423 | 4027 \sim 2322 \cong 2322 | 4069 \sim 2307 \cong 2307$ $4070 \sim 2320 \cong 2294 | 4112 \sim 2293 \cong 2293 | 4154 \sim 2286 \cong 2286 | 4196 \sim 2396 \cong 2396$ $4071 \sim 2280 \cong 2280 \mid 4113 \sim 2271 \cong 2271 \mid 4155 \sim 2283 \cong 2283 \mid 4197 \sim 820 \cong 820$ $4072 \sim 731 \cong 731 | 4114 \sim 2388 \cong 821 | 4156 \sim 730 \cong 730 | 4198 \sim 2398 \cong 2398$ $4073 \sim 2322 \cong 2322 | 4115 \sim 2401 \cong 2401 | 4157 \sim 2285 \cong 2285 | 4199 \sim 2423 \cong 2423$ $4074 \sim 731 \cong 731 | 4116 \sim 2361 \cong 2361 | 4158 \sim 730 \cong 730 | 4200 \sim 2371 \cong 2371$ $4075 \sim 2284 \cong 2284 | 4117 \sim 821 \cong 821 | 4159 \sim 820 \cong 820 | 4201 \sim 820 \cong 820$ $4076 \sim 2293 \cong 2293 \mid 4118 \sim 2424 \cong 966 \mid 4160 \sim 2365 \cong 2365 \mid 4202 \sim 2369 \cong 2369$ $4077 \sim 2271 \cong 2271 | 4119 \sim 821 \cong 821 | 4161 \sim 820 \cong 820 | 4203 \sim 820 \cong 820$ $4078 \sim 2395 \cong 2395 | 4120 \sim 2365 \cong 2365 | 4162 \sim 2361 \cong 2361 | 4204 \sim 730 \cong 730$ $4079 \sim 2401 \cong 2401 | 4121 \sim 2374 \cong 821 | 4163 \sim 2367 \cong 2367 | 4205 \sim 2234 \cong 2234$ $4080 \sim 2398 \cong 2398 \mid 4122 \sim 2352 \cong 740 \mid 4164 \sim 2364 \cong 2364 \mid 4206 \sim 730 \cong 730$ $4081 \sim 821 \cong 821 | 4123 \sim 2226 \cong 820 | 4165 \sim 820 \cong 820 | 4207 \sim 2236 \cong 2236$ $4082 \sim 2403 \cong 2287 | 4124 \sim 2239 \cong 2239 | 4166 \sim 2366 \cong 2366 | 4208 \sim 2261 \cong 2261$ $4083 \sim 821 \cong 821 | 4125 \sim 2199 \cong 2199 | 4167 \sim 820 \cong 820 | 4209 \sim 2209 \cong 2209$ $4084 \sim 2396 \cong 2396 | 4126 \sim 731 \cong 731 | 4168 \sim 1090 \cong 1090 | 4210 \sim 730 \cong 730$ $4085 \sim 2402 \cong 2402 | 4127 \sim 2262 \cong 750 | 4169 \sim 2851 \cong 929 | 4211 \sim 2207 \cong 2207$ $4086 \sim 2399 \cong 2399 | 4128 \sim 731 \cong 731 | 4170 \sim 1090 \cong 1090 | 4212 \sim 730 \cong 730$ $4087 \sim 2874 \cong 820 | 4129 \sim 2203 \cong 2203 | 4171 \sim 2847 \cong 929 | 4213 \sim 2233 \cong 2233$ $4088 \sim 2887 \cong 731 \mid 4130 \sim 2212 \cong 2212 \mid 4172 \sim 2853 \cong 2853 \mid 4214 \sim 731 \cong 731$ $4089 \sim 2847 \cong 929 | 4131 \sim 2190 \cong 750 | 4173 \sim 2850 \cong 2850 | 4215 \sim 2234 \cong 2234$ $4090 \sim 1091 \cong 731 | 4132 \sim 730 \cong 730 | 4174 \sim 1090 \cong 1090 | 4216 \sim 2239 \cong 2239$ $4091 \sim 2889 \cong 750 | 4133 \sim 2203 \cong 2203 | 4175 \sim 2852 \cong 849 | 4217 \sim 2241 \cong 739$ $4092 \sim 1091 \cong 731 | 4134 \sim 730 \cong 730 | 4176 \sim 1090 \cong 1090 | 4218 \sim 2240 \cong 2240$ $4093 \sim 2851 \cong 929 | 4135 \sim 2199 \cong 2199 | 4177 \sim 820 \cong 820 | 4219 \sim 2236 \cong 2236$ $4094 \sim 2860 \cong 2212 \mid 4136 \sim 2205 \cong 775 \mid 4178 \sim 2396 \cong 2396 \mid 4220 \sim 731 \cong 731$ $4095 \sim 2838 \cong 750 | 4137 \sim 2202 \cong 2202 | 4179 | \sim 820 \cong 820 | 4221 \sim 2237 \cong 2237$ $4096 \sim 2388 \cong 821 \mid 4138 \sim 730 \cong 730 \mid 4180 \sim 2398 \cong 2398 \mid 4222 \sim 2395 \cong 2395$ $4097 \sim 2401 \cong 2401 | 4139 \sim 2204 \cong 2204 | 4181 \sim 2423 \cong 2423 | 4223 \sim 821 \cong 821$ $4098 \sim 2361 \cong 2361 | 4140 \sim 730 \cong 730 | 4182 \sim 2371 \cong 2371 | 4224 \sim 2396 \cong 2396$ $4099 \sim 821 \cong 821 | 4141 \sim 820 \cong 820 | 4183 \sim 820 \cong 820 | 4225 \sim 2401 \cong 2401$ $4100 \sim 2424 \cong 966 | 4142 \sim 2365 \cong 2365 | 4184 \sim 2369 \cong 2369 | 4226 \sim 2403 \cong 2287$ $4101 \sim 821 \cong 821 | 4143 \sim 820 \cong 820 | 4185 \sim 820 \cong 820 | 4227 \sim 2402 \cong 2402$ $4102 \sim 2365 \cong 2365 | 4144 \sim 2361 \cong 2361 | 4186 \sim 730 \cong 730 | 4228 \sim 2398 \cong 2398$ $4103 \sim 2374 \cong 821 | 4145 \sim 2367 \cong 2367 | 4187 \sim 2284 \cong 2284 | 4229 \sim 821 \cong 821$ $4104 \sim 2352 \cong 740 | 4146 \sim 2364 \cong 2364 | 4188 \sim 730 \cong 730 | 4230 \sim 2399 \cong 2399$ $4105 \sim 2307 \cong 2307 | 4147 \sim 820 \cong 820 | 4189 \sim 2280 \cong 2280 | 4231 \sim 2307 \cong 2307$ $4106 \sim 2320 \cong 2294 | 4148 \sim 2366 \cong 2366 | 4190 \sim 2286 \cong 2286 | 4232 \sim 731 \cong 731$ $4107 \sim 2280 \cong 2280 | 4149 \sim 820 \cong 820 | 4191 \sim 2283 \cong 2283 | 4233 \sim 2284 \cong 2284$ $4108 \sim 731 \cong 731 | 4150 \sim 730 \cong 730 | 4192 \sim 730 \cong 730 | 4234 \sim 2320 \cong 2294$ $4109 \sim 2322 \cong 2322 \mid 4151 \sim 2284 \cong 2284 \mid 4193 \sim 2285 \cong 2285 \mid 4235 \sim 2322 \cong 2322$ $4110 \sim 731 \cong 731 | 4152 \sim 730 \cong 730 | 4194 \sim 730 \cong 730 | 4236 \sim 2293 \cong 2293$ $4111 \sim 2284 \cong 2284 | 4153 \sim 2280 \cong 2280 | 4195 \sim 820 \cong 820 | 4237 \sim 2280 \cong 2280$

 $4238 \sim 731 \cong 731 | 4280 \sim 2424 \cong 966 | 4322 \sim 2388 \cong 821 | 4364 \sim 2368 \cong 739$ $4239 \sim 2271 \cong 2271 | 4281 \sim 2374 \cong 821 | 4323 \sim 820 \cong 820 | 4365 \sim 820 \cong 820$ $4240 \sim 2395 \cong 2395 | 4282 \sim 2361 \cong 2361 | 4324 \sim 2388 \cong 821 | 4366 \sim 730 \cong 730$ $4241 \sim 821 \cong 821 | 4283 \sim 821 \cong 821 | 4325 \sim 2394 \cong 820 | 4367 \sim 2233 \cong 2233$ $4242 \sim 2396 \cong 2396 | 4284 \sim 2352 \cong 740 | 4326 \sim 2391 \cong 2391 | 4368 \sim 730 \cong 730$ $4243 \sim 2401 \cong 2401 \mid 4285 \sim 2226 \cong 820 \mid 4327 \sim 820 \cong 820 \mid 4369 \sim 2233 \cong 2233$ $4244 \sim 2403 \cong 2287 \mid 4286 \sim 731 \cong 731 \mid 4328 \sim 2391 \cong 2391 \mid 4370 \sim 2260 \cong 802$ $4245 \sim 2402 \cong 2402 | 4287 \sim 2203 \cong 2203 | 4329 \sim 820 \cong 820 | 4371 \sim 2206 \cong 748$ $4246 \sim 2398 \cong 2398 \mid 4288 \sim 2239 \cong 2239 \mid 4330 \sim 1090 \cong 1090 \mid 4372 \sim 730 \cong 730$ $4247 \sim 821 \cong 821 | 4289 \sim 2262 \cong 750 | 4331 \sim 2874 \cong 820 | 4373 \sim 2206 \cong 748$ $4248 \sim 2399 \cong 2399 | 4290 \sim 2212 \cong 2212 | 4332 \sim 1090 \cong 1090 | 4374 \sim 730 \cong 730$ $4249 \sim 2874 \cong 820 | 4291 \sim 2199 \cong 2199 | 4333 \sim 2874 \cong 820 | 4375 \sim 1094 \cong 1090$ $4250 \sim 1091 \cong 731 | 4292 \sim 731 \cong 731 | 4334 \sim 2880 \cong 730 | 4376 \sim 824 \cong 820$ $4251 \sim 2851 \cong 929 | 4293 \sim 2190 \cong 750 | 4335 \sim 2854 \cong 847 | 4377 \sim 824 \cong 820$ $4252 \sim 2887 \cong 731 | 4294 \sim 730 \cong 730 | 4336 \sim 1090 \cong 1090 | 4378 \sim 824 \cong 820$ $4253 \sim 2889 \cong 750 | 4295 \sim 2226 \cong 820 | 4337 \sim 2854 \cong 847 | 4379 \sim 734 \cong 730$ $4254 \sim 2860 \cong 2212 | 4296 \sim 730 \cong 730 | 4338 \sim 1090 \cong 1090 | 4380 \sim 734 \cong 730$ $4255 \sim 2847 \cong 929 | 4297 \sim 2226 \cong 820 | 4339 \sim 820 \cong 820 | 4381 \sim 824 \cong 820$ $4256 \sim 1091 \cong 731 \mid 4298 \sim 2232 \cong 730 \mid 4340 \sim 2395 \cong 2395 \mid 4382 \sim 734 \cong 730$ $4257 \sim 2838 \cong 750 | 4299 \sim 2229 \cong 2229 | 4341 \sim 820 \cong 820 | 4383 \sim 734 \cong 730$ $4258 \sim 2388 \cong 821 \mid 4300 \sim 730 \cong \mid 730 \mid 4342 \sim 2395 \cong 2395 \mid 4384 \sim 2889 \cong 750$ $4259 \sim 821 \cong 821 | 4301 \sim 2229 \cong 2229 | 4343 \sim 2422 \cong 820 | 4385 \sim 2424 \cong 966$ $4260 \sim 2365 \cong 2365 \mid 4302 \sim 730 \cong 730 \mid 4344 \sim 2368 \cong 739 \mid 4386 \sim 2403 \cong 2287$ $4261 \sim 2401 \cong 2401 \mid 4303 \sim 820 \cong 820 \mid 4345 \sim 820 \cong 820 \mid 4387 \sim 2424 \cong 966$ $4262 \sim 2424 \cong 966 \mid 4304 \sim 2388 \cong 821 \mid 4346 \sim 2368 \cong 739 \mid 4388 \sim 2262 \cong 750$ $4263 \sim 2374 \cong 821 \mid 4305 \sim 820 \cong 820 \mid 4347 \sim 820 \cong 820 \mid 4389 \sim 2322 \cong 2322$ $4264 \sim 2361 \cong 2361 \mid 4306 \sim 2388 \cong 821 \mid 4348 \sim 730 \cong 730 \mid 4390 \sim 2403 \cong 2287$ $4265 \sim 821 \cong 821 \mid 4307 \sim 2394 \cong 820 \mid 4349 \sim 2307 \cong 2307 \mid 4391 \sim 2322 \cong 2322$ $4266 \sim 2352 \cong 740 \mid 4308 \sim 2391 \cong 2391 \mid 4350 \sim 730 \cong 730 \mid 4392 \sim 2241 \cong 739$ $4267 \sim 2307 \cong 2307 \mid 4309 \sim 820 \cong 820 \mid 4351 \sim 2307 \cong 2307 \mid 4393 \sim 2862 \cong 847$ $4268 \sim 731 \cong 731 | 4310 \sim 2391 \cong 2391 | 4352 \sim 2313 \cong 2277 | 4394 \sim 2427 \cong 2427$ $4269 \sim 2284 \cong 2284 | 4311 | \sim 820 \cong 820 | 4353 \sim 2287 \cong 2287 | 4395 \sim 2376 \cong 739$ $4270 \sim 2320 \cong 2294 | 4312 \sim 730 \cong 730 | 4354 \sim 730 \cong 730 | 4396 \sim 2427 \cong 2427$ $4271 \sim 2322 \cong 2322 \mid 4313 \sim 2307 \cong 2307 \mid 4355 \sim 2287 \cong 2287 \mid 4397 \sim 2265 \cong 2265$ $4272 \sim 2293 \cong |2293| 4314 \sim 730 \cong 730 |4356 \sim 730 \cong 730 |4398 \sim 2295 \cong 2295$ $4273 \sim 2280 \cong 2280 \mid 4315 \sim 2307 \cong 2307 \mid 4357 \sim 820 \cong 820 \mid 4399 \sim 2376 \cong 739$ $4274 \sim 731 \cong 731 \mid 4316 \sim 2313 \cong 2277 \mid 4358 \sim 2395 \cong 2395 \mid 4400 \sim 2295 \cong 2295$ $4275 \sim 2271 \cong 2271 \mid 4317 \sim 2287 \cong 2287 \mid 4359 \sim 820 \cong 820 \mid 4401 \sim 2214 \cong 748$ $4276 \sim 2388 \cong 821 \mid 4318 \sim 730 \cong 730 \mid 4360 \sim 2395 \cong 2395 \mid 4402 \sim 2889 \cong 750$ $4277 \sim 821 \cong 821 | 4319 \sim 2287 \cong 2287 | 4361 \sim 2422 \cong 820 | 4403 \sim 2424 \cong 966$ $4278 \sim 2365 \cong 2365 \mid 4320 \sim 730 \cong 730 \mid 4362 \sim 2368 \cong 739 \mid 4404 \sim 2403 \cong 2287$ $4279 \sim 2401 \cong 2401 \mid 4321 \sim 820 \cong 820 \mid 4363 \sim 820 \cong 820 \mid 4405 \sim 2424 \cong 966$ $4406 \sim 2262 \cong 750 | 4448 \sim 2426 \cong 2277 | 4490 \sim 2293 \cong 2293 | 4532 \sim 2210 \cong 2210$ $4407 \sim 2322 \cong 2322 \mid 4449 \sim 2358 \cong 820 \mid 4491 \sim 2240 \cong 2240 \mid 4533 \sim 2274 \cong 2274$ $4408 \sim 2403 \cong 2287 \, | \, 4450 \sim 2426 \cong 2277 \, | \, 4492 \sim 2854 \cong 847 \, | \, 4534 \sim 2355 \cong 2355$ $4409 \sim 2322 \cong 2322 \mid 4451 \sim 2264 \cong 730 \mid 4493 \sim 2368 \cong 739 \mid 4535 \sim 2274 \cong 2274$ $4410 \sim 2241 \cong 739 | 4452 \sim 2277 \cong 2277 | 4494 \sim 2391 \cong 2391 | 4536 \sim 2193 \cong 2193$ $4411 \sim 2880 \cong 730 | 4453 \sim 2358 \cong 820 | 4495 \sim 2368 \cong 739 | 4537 \sim 2889 \cong 750$ $4412 \sim 2422 \cong 820 | 4454 \sim 2277 \cong 2277 | 4496 \sim 2206 \cong 748 | 4538 \sim 2403 \cong 2287$ $4413 \sim 2394 \cong 820 | 4455 \sim 2196 \cong 802 | 4497 \sim 2287 \cong 2287 | 4539 \sim 2424 \cong 966$ $4414 \sim 2422 \cong 820 \mid 4456 \sim 2862 \cong 847 \mid 4498 \sim 2391 \cong 2391 \mid 4540 \sim 2403 \cong 2287$ $4415 \sim 2260 \cong 802 \mid 4457 \sim 2376 \cong 739 \mid 4499 \sim 2287 \cong 2287 \mid 4541 \sim 2241 \cong 739$ $4416 \sim 2313 \cong 2277 \mid 4458 \sim 2427 \cong 2427 \mid 4500 \sim 2229 \cong 2229 \mid 4542 \sim 2322 \cong 2322$ $4417 \sim 2394 \cong 820 | 4459 \sim 2376 \cong 739 | 4501 \sim 2850 \cong 2850 | 4543 \sim 2424 \cong 966$ $4418 \sim 2313 \cong 2277 \mid 4460 \sim 2214 \cong 748 \mid 4502 \sim 2371 \cong 2371 \mid 4544 \sim 2322 \cong 2322$ $4419 \sim 2232 \cong 730 | 4461 \sim 2295 \cong 2295 | 4503 \sim 2364 \cong 2364 | 4545 \sim 2262 \cong 750$ $4420 \sim 2853 \cong 2853 | 4462 \sim 2427 \cong 2427 | 4504 \sim 2371 \cong 2371 | 4546 \sim 1091 \cong 731$ $4421 \sim 2423 \cong 2423 \mid 4463 \sim 2295 \cong 2295 \mid 4505 \sim 2209 \cong 2209 \mid 4547 \sim 821 \cong 821$ $4422 \sim 2367 \cong 2367 \mid 4464 \sim 2265 \cong 2265 \mid 4506 \sim 2283 \cong 2283 \mid 4548 \sim 821 \cong 821$ $4423 \sim 2423 \cong 2423 \mid 4465 \sim 1091 \cong 731 \mid 4507 \sim 2364 \cong 2364 \mid 4549 \sim 821 \cong 821$ $4424 \sim 2261 \cong 2261 \mid 4466 \sim 821 \cong 821 \mid 4508 \sim 2283 \cong 2283 \mid 4550 \sim 731 \cong 731$ $4425 \sim 2286 \cong 2286 | 4467 \sim 821 \cong 821 | 4509 \sim 2202 \cong 2202 | 4551 \sim 731 \cong 731$ $4426 \sim 2367 \cong 2367 \mid 4468 \sim 821 \cong 821 \mid 4510 \sim 2861 \cong 731 \mid 4552 \sim 821 \cong 821$ $4427 \sim 2286 \cong 2286 \mid 4469 \sim 731 \cong 731 \mid 4511 \sim 2375 \cong 2375 \mid 4553 \sim 731 \cong 731$ $4428 \sim 2205 \cong 775 \mid 4470 \sim 731 \cong 731 \mid 4512 \sim 2375 \cong 2375 \mid 4554 \sim 731 \cong 731$ $4429 \sim 2862 \cong 847 | 4471 \sim 821 \cong 821 | 4513 \sim 2375 \cong 2375 | 4555 \sim 1091 \cong 731$ $4430 \sim 2427 \cong 2427 \mid 4472 \sim 731 \cong 731 \mid 4514 \sim 2213 \cong 2213 \mid 4556 \sim 821 \cong 821$ $4431 \sim 2376 \cong 739 | 4473 \sim 731 \cong 731 | 4515 \sim 2294 \cong 2294 | 4557 \sim 821 \cong 821$ $4432 \sim 2427 \cong 2427 \mid 4474 \sim 1091 \cong 731 \mid 4516 \sim 2375 \cong 2375 \mid 4558 \sim 821 \cong 821$ $4433 \sim 2265 \cong 2265 \mid 4475 \sim 821 \cong 821 \mid 4517 \sim 2294 \cong 2294 \mid 4559 \sim 731 \cong 731$ $4434 \sim 2295 \cong 2295 | 4476 \sim 821 \cong 821 | 4518 \sim 2213 \cong 2213 | 4560 \sim 731 \cong 731$ $4435 \sim 2376 \cong 739 | 4477 \sim 821 \cong 821 | 4519 \sim 2852 \cong 849 | 4561 \sim 821 \cong 821$ $4436 \sim 2295 \cong 2295 | 4478 \sim 731 \cong 731 | 4520 \sim 2369 \cong 2369 | 4562 \sim 731 \cong 731$ $4437 \sim 2214 \cong 748 | 4479 \sim 731 \cong 731 | 4521 \sim 2366 \cong 2366 | 4563 \sim 731 \cong 731$ $4438 \sim 2853 \cong 2853 | 4480 \sim 821 \cong 821 | 4522 \sim 2369 \cong 2369 | 4564 \sim 2887 \cong 731$ $4439 \sim 2423 \cong 2423 \mid 4481 \sim 731 \cong 731 \mid 4523 \sim 2207 \cong 2207 \mid 4565 \sim 2401 \cong 2401$ $4440 \sim 2367 \cong 2367 | 4482 \sim 731 \cong 731 | 4524 \sim 2285 \cong 2285 | 4566 \sim 2401 \cong 2401$ $4441 \sim 2423 \cong 2423 \mid 4483 \sim 2860 \cong 2212 \mid 4525 \sim 2366 \cong 2366 \mid 4567 \sim 2401 \cong 2401$ $4442 \sim 2261 \cong 2261 | 4484 \sim 2374 \cong 821 | 4526 \sim 2285 \cong 2285 | 4568 \sim 2239 \cong 2239$ $4443 \sim 2286 \cong 2286 | 4485 \sim 2402 \cong 2402 | 4527 \sim 2204 \cong 2204 | 4569 \sim 2320 \cong 2294$ $4444 \sim 2367 \cong 2367 \mid 4486 \sim 2374 \cong 821 \mid 4528 \sim 2841 \cong 2841 \mid 4570 \sim 2401 \cong 2401$ $4445 \sim 2286 \cong 2286 | 4487 \sim 2212 \cong 2212 | 4529 \sim 2372 \cong 2372 | 4571 \sim 2320 \cong 2294$ $4446 \sim 2205 \cong 775 \, | \, 4488 \sim 2293 \cong 2293 \, | \, 4530 \sim 2355 \cong 2355 \, | \, 4572 \sim 2239 \cong 2239$ $4447 \sim 2844 \cong 730 | 4489 \sim 2402 \cong 2402 | 4531 \sim 2372 \cong 2372 | 4573 \sim 2874 \cong 820$

 $4574 \sim 2395 \cong 2395 \mid 4616 \sim 2271 \cong 2271 \mid 4658 \sim 2206 \cong 748 \mid 4700 \sim 2358 \cong 820$ $4575 \sim 2388 \cong 821 | 4617 \sim 2190 \cong 750 | 4659 \sim 2287 \cong 2287 | 4701 \sim 2426 \cong 2277$ $4576 \sim 2395 \cong 2395 | 4618 \sim 2862 \cong 847 | 4660 \sim 2391 \cong 2391 | 4702 \sim 2358 \cong 820$ $4577 \sim 2233 \cong 2233 \mid 4619 \sim 2376 \cong 739 \mid 4661 \sim 2287 \cong 2287 \mid 4703 \sim 2196 \cong 802$ $4578 \sim 2307 \cong 2307 \mid 4620 \sim 2427 \cong 2427 \mid 4662 \sim 2229 \cong 2229 \mid 4704 \sim 2277 \cong 2277$ $4579 \sim 2388 \cong 821 \mid 4621 \sim 2376 \cong 739 \mid 4663 \sim 2852 \cong 849 \mid 4705 \sim 2426 \cong 2277$ $4580 \sim 2307 \cong 2307 | 4622 \sim 2214 \cong 748 | 4664 \sim 2369 \cong 2369 | 4706 \sim 2277 \cong 2277$ $4581 \sim 2226 \cong 820 | 4623 \sim 2295 \cong 2295 | 4665 \sim 2366 \cong 2366 | 4707 \sim 2264 \cong 730$ $4582 \sim 2847 \cong 929 | 4624 \sim 2427 \cong 2427 | 4666 \sim 2369 \cong 2369 | 4708 \sim 2838 \cong 750$ $4583 \sim 2398 \cong 2398 \mid 4625 \sim 2295 \cong 2295 \mid 4667 \sim 2207 \cong 2207 \mid 4709 \sim 2352 \cong 740$ $4584 \sim 2361 \cong 2361 \mid 4626 \sim 2265 \cong 2265 \mid 4668 \sim 2285 \cong 2285 \mid 4710 \sim 2399 \cong 2399$ $4585 \sim 2398 \cong 2398 | 4627 \sim 2860 \cong 2212 | 4669 \sim 2366 \cong 2366 | 4711 \sim 2352 \cong 740$ $4586 \sim 2236 \cong 2236 | 4628 \sim 2374 \cong 821 | 4670 \sim 2285 \cong 2285 | 4712 \sim 2190 \cong 750$ $4587 \sim 2280 \cong 2280 | 4629 \sim 2402 \cong 2402 | 4671 \sim 2204 \cong 2204 | 4713 \sim 2271 \cong 2271$ $4588 \sim 2361 \cong 2361 \mid 4630 \sim 2374 \cong 821 \mid 4672 \sim 1091 \cong 731 \mid 4714 \sim 2399 \cong 2399$ $4589 \sim 2280 \cong 2280 | 4631 \sim 2212 \cong 2212 | 4673 \sim 821 \cong 821 | 4715 \sim 2271 \cong 2271$ $4590 \sim 2199 \cong 2199 | 4632 \sim 2293 \cong 2293 | 4674 \sim 821 \cong 821 | 4716 \sim 2237 \cong 2237$ $4591 \sim 2860 \cong 2212 \mid 4633 \sim 2402 \cong 2402 \mid 4675 \sim 821 \cong 821 \mid 4717 \sim 2841 \cong 2841$ $4592 \sim 2402 \cong 2402 | 4634 \sim 2293 \cong 2293 | 4676 \sim 731 \cong 731 | 4718 \sim 2355 \cong 2355$ $4593 \sim 2374 \cong 821 \mid 4635 \sim 2240 \cong 2240 \mid 4677 \sim 731 \cong 731 \mid 4719 \sim 2372 \cong 2372$ $4594 \sim 2402 \cong 2402 \mid 4636 \sim 2861 \cong 731 \mid 4678 \sim 821 \cong 821 \mid 4720 \sim 2355 \cong 2355$ $4595 \sim 2240 \cong 2240 | 4637 \sim 2375 \cong 2375 | 4679 \sim 731 \cong 731 | 4721 \sim 2193 \cong 2193$ $4596 \sim 2293 \cong 2293 \mid 4638 \sim 2375 \cong 2375 \mid 4680 \sim 731 \cong 731 \mid 4722 \sim 2274 \cong 2274$ $4597 \sim 2374 \cong 821 \mid 4639 \sim 2375 \cong 2375 \mid 4681 \sim 2850 \cong 2850 \mid 4723 \sim 2372 \cong 2372$ $4598 \sim 2293 \cong 2293 \mid 4640 \sim 2213 \cong 2213 \mid 4682 \sim 2371 \cong 2371 \mid 4724 \sim 2274 \cong 2274$ $4599 \sim 2212 \cong 2212 \mid 4641 \sim 2294 \cong 2294 \mid 4683 \sim 2364 \cong 2364 \mid 4725 \sim 2210 \cong 2210$ $4600 \sim 2851 \cong 929 | 4642 \sim 2375 \cong 2375 | 4684 \sim 2371 \cong 2371 | 4726 \sim 2838 \cong 750$ $4601 \sim 2396 \cong 2396 | 4643 \sim 2294 \cong 2294 | 4685 \sim 2209 \cong 2209 | 4727 \sim 2352 \cong 740$ $4602 \sim 2365 \cong 2365 | 4644 \sim 2213 \cong 2213 | 4686 \sim 2283 \cong 2283 | 4728 \sim 2399 \cong 2399$ $4603 \sim 2396 \cong 2396 | 4645 \sim 1091 \cong 731 | 4687 \sim 2364 \cong 2364 | 4729 \sim 2352 \cong 740$ $4604 \sim 2234 \cong 2234 | 4646 \sim 821 \cong 821 | 4688 \sim 2283 \cong 2283 | 4730 \sim 2190 \cong 750$ $4605 \sim 2284 \cong 2284 | 4647 \sim 821 \cong 821 | 4689 \sim 2202 \cong 2202 | 4731 \sim 2271 \cong 2271$ $4606 \sim 2365 \cong 2365 \mid 4648 \sim 821 \cong 821 \mid 4690 \sim 2841 \cong 2841 \mid 4732 \sim 2399 \cong 2399$ $4607 \sim 2284 \cong 2284 \mid 4649 \sim 731 \cong 731 \mid 4691 \sim 2372 \cong 2372 \mid 4733 \sim 2271 \cong 2271$ $4608 \sim 2203 \cong 2203 | 4650 \sim 731 \cong 731$ $|4692 \sim 2355 \cong 2355 | 4734 \sim 2237 \cong 2237$ $4609 \sim 2838 \cong 750 | 4651 \sim 821 \cong 821$ $4693 \sim 2372 \cong 2372 | 4735 \sim 1090 \cong 1090$ $4610 \sim 2399 \cong 2399 | 4652 \sim 731 \cong 731$ $|4694 \sim 2210 \cong 2210 |4736 \sim 820 \cong 820$ $4611 \sim 2352 \cong 740 \mid 4653 \sim 731 \cong 731 \mid 4695 \sim 2274 \cong 2274 \mid 4737 \sim 820 \cong 820$ $4612 \sim 2399 \cong 2399 \mid 4654 \sim 2854 \cong 847 \mid 4696 \sim 2355 \cong 2355 \mid 4738 \sim 820 \cong 820$ $4613 \sim 2237 \cong 2237 \mid 4655 \sim 2368 \cong 739 \mid 4697 \sim 2274 \cong 2274 \mid 4739 \sim 730 \cong 730$ $4614 \sim 2271 \cong 2271 \mid 4656 \sim 2391 \cong 2391 \mid 4698 \sim 2193 \cong 2193 \mid 4740 \sim 730 \cong 730$ $4615 \sim 2352 \cong 740 | 4657 \sim 2368 \cong 739 | 4699 \sim 2844 \cong 730 | 4741 \sim 820 \cong 820$ $4742 \sim 730 \cong 730 | 4784 \sim 2205 \cong 775 | 4826 \sim 820 \cong 820 | 4868 \sim 2322 \cong 2322$ $4743 \sim 730 \cong 730 | 4785 \sim 2286 \cong 2286 | 4827 \sim 820 \cong 820 | 4869 \sim 2262 \cong 750$ $4744 \sim 1090 \cong 1090 | 4786 \sim 2423 \cong 2423 | 4828 \sim 820 \cong 820 | 4870 \sim 2887 \cong 731$ $4745 \sim 820 \cong 820 | 4787 \sim 2286 \cong 2286 | 4829 \sim 730 \cong 730 | 4871 \sim 2401 \cong 2401$ $4746 \sim 820 \cong 820 | 4788 \sim 2261 \cong 2261 | 4830 \sim 730 \cong 730 | 4872 \sim 2401 \cong 2401$ $4747 \sim 820 \cong 820 | 4789 \sim 2851 \cong 929 | 4831 \sim 820 \cong 820 | 4873 \sim 2401 \cong 2401$ $4748 \sim 730 \cong 730 | 4790 \sim 2365 \cong 2365 | 4832 \sim 730 \cong 730 | 4874 \sim 2239 \cong 2239$ $4749 \sim 730 \cong 730 | 4791 \sim 2396 \cong 2396 | 4833 \sim 730 \cong 730 | 4875 \sim 2320 \cong 2294$ $4750 \sim 820 \cong 820 | 4792 \sim 2365 \cong 2365 | 4834 \sim 2850 \cong 2850 | 4876 \sim 2401 \cong 2401$ $4751 \sim 730 \cong 730 | 4793 \sim 2203 \cong 2203 | 4835 \sim 2364 \cong 2364 | 4877 \sim 2320 \cong 2294$ $4752 \sim 730 \cong 730 | 4794 \sim 2284 \cong 2284 | 4836 \sim 2371 \cong 2371 | 4878 \sim 2239 \cong 2239$ $4753 \sim 2841 \cong 2841 | 4795 \sim 2396 \cong 2396 | 4837 \sim 2364 \cong 2364 | 4879 \sim 2860 \cong 2212$ $4754 \sim 2355 \cong 2355 | 4796 \sim 2284 \cong 2284 | 4838 \sim 2202 \cong 2202 | 4880 \sim 2402 \cong 2402$ $4755 \sim 2372 \cong 2372 | 4797 \sim 2234 \cong 2234 | 4839 \sim 2283 \cong 2283 | 4881 \sim 2374 \cong 821$ $4756 \sim 2355 \cong 2355 | 4798 \sim 2852 \cong 849 | 4840 \sim 2371 \cong 2371 | 4882 \sim 2402 \cong 2402$ $4757 \sim 2193 \cong 2193 | 4799 \sim 2366 \cong 2366 | 4841 \sim 2283 \cong 2283 | 4883 \sim 2240 \cong 2240$ $4758 \sim 2274 \cong 2274 | 4800 \sim 2369 \cong 2369 | 4842 \sim 2209 \cong 2209 | 4884 \sim 2293 \cong 2293$ $4759 \sim 2372 \cong 2372 | 4801 \sim 2366 \cong 2366 | 4843 \sim 1090 \cong 1090 | 4885 \sim 2374 \cong 821$ $4760 \sim 2274 \cong 2274 | 4802 \sim 2204 \cong 2204 | 4844 \sim 820 \cong 820 | 4886 \sim 2293 \cong 2293$ $4761 \sim 2210 \cong 2210 | 4803 \sim 2285 \cong 2285 | 4845 \sim 820 \cong 820 | 4887 \sim 2212 \cong 2212$ $4762 \sim 1090 \cong 1090 | 4804 \sim 2369 \cong 2369 | 4846 | \sim 820 \cong 820 | 4888 \sim 1091 \cong 731$ $4763 \sim 820 \cong 820 | 4805 \sim 2285 \cong 2285 | 4847 \sim 730 \cong 730 | 4889 \sim 821 \cong 821$ $4764 \sim 820 \cong 820 | 4806 \sim 2207 \cong 2207 | 4848 \sim 730 \cong 730 | 4890 \sim 821 \cong 821$ $4765 \sim 820 \cong 820 | 4807 \sim 2847 \cong 929 | 4849 \sim 820 \cong 820 | 4891 \sim 821 \cong 821$ $4766 \sim 730 \cong 730 | 4808 \sim 2361 \cong 2361 | 4850 \sim 730 \cong 730 | 4892 \sim 731 \cong 731$ $4767 \sim 730 \cong 730 | 4809 \sim 2398 \cong 2398 | 4851 \sim 730 \cong 730 | 4893 \sim 731 \cong 731$ $4768 \sim 820 \cong 820 | 4810 \sim 2361 \cong 2361 | 4852 \sim 1090 \cong 1090 | 4894 \sim 821 \cong 821$ $4769 \sim 730 \cong 730 | 4811 \sim 2199 \cong 2199 | 4853 \sim 820 \cong 820 | 4895 \sim 731 \cong 731$ $4770 \sim 730 \cong 730 | 4812 \sim 2280 \cong 2280 | 4854 \sim 820 \cong 820 | 4896 \sim 731 \cong 731$ $4771 \sim 1090 \cong 1090 | 4813 \sim 2398 \cong 2398 | 4855 \sim 820 \cong 820 | 4897 \sim 2874 \cong 820$ $4772 \sim 820 \cong 820 | 4814 \sim 2280 \cong 2280 | 4856 \sim 730 \cong 730 | 4898 \sim 2395 \cong 2395$ $4773 \sim 820 \cong 820 | 4815 \sim 2236 \cong 2236 | 4857 \sim 730 \cong 730 | 4899 \sim 2388 \cong 821$ $4774 \sim 820 \cong 820 | 4816 \sim 1090 \cong 1090 | 4858 \sim 820 \cong 820 | 4900 \sim 2395 \cong 2395$ $4775 \sim 730 \cong 730 | 4817 \sim 820 \cong 820 | 4859 \sim 730 \cong 730 | 4901 \sim 2233 \cong 2233$ $4776 \sim 730 \cong 730 | 4818 \sim 820 \cong 820 | 4860 \sim 730 \cong 730 | 4902 \sim 2307 \cong 2307$ $4777 \sim 820 \cong 820 | 4819 \sim 820 \cong 820 | 4861 \sim 2889 \cong 750 | 4903 \sim 2388 \cong 821$ $4778 \sim 730 \cong 730 | 4820 \sim 730 \cong 730 | 4862 \sim 2403 \cong 2287 | 4904 \sim 2307 \cong 2307$ $4779 \sim 730 \cong 730 | 4821 \sim 730 \cong 730 | 4863 \sim 2424 \cong 966 | 4905 \sim 2226 \cong 820$ $4780 \sim 2853 \cong 2853 | 4822 \sim 820 \cong 820 | 4864 \sim 2403 \cong 2287 | 4906 \sim 2851 \cong 929$ $4781 \sim 2367 \cong 2367 \mid 4823 \sim 730 \cong 730 \mid 4865 \sim 2241 \cong 739 \mid 4907 \sim 2396 \cong 2396$ $4782 \sim 2423 \cong 2423 \mid 4824 \sim 730 \cong 730 \mid 4866 \sim 2322 \cong 2322 \mid 4908 \sim 2365 \cong 2365$ $4783 \sim 2367 \cong 2367 | 4825 \sim 1090 \cong 1090 | 4867 \sim 2424 \cong 966 | 4909 \sim 2396 \cong 2396$

 $4910 \sim 2234 \cong 2234 \mid 4952 \sim 2361 \cong 2361 \mid 4994 \sim 730 \cong 730 \mid 5036 \sim 2226 \cong 820$ $4911 \sim 2284 \cong 2284 \mid 4953 \sim 2398 \cong 2398 \mid 4995 \sim 730 \cong 730 \mid 5037 \sim 2307 \cong 2307$ $4912 \sim 2365 \cong 2365 \mid 4954 \sim 2361 \cong 2361 \mid 4996 \sim 2852 \cong 849 \mid 5038 \sim 2395 \cong 2395$ $4913 \sim 2284 \cong 2284 | 4955 \sim 2199 \cong 2199 | 4997 \sim 2366 \cong 2366 | 5039 \sim 2307 \cong 2307$ $4914 \sim 2203 \cong 2203 | 4956 \sim 2280 \cong 2280 | 4998 \sim 2369 \cong 2369 | 5040 \sim 2233 \cong 2233$ $4915 \sim 1091 \cong 731 | 4957 \sim 2398 \cong 2398 | 4999 \sim 2366 \cong 2366 | 5041 \sim 2854 \cong 847$ $4916 \sim 821 \cong 821 \mid 4958 \sim 2280 \cong 2280 \mid 5000 \sim 2204 \cong 2204 \mid 5042 \sim 2391 \cong 2391$ $4917 \sim 821 \cong 821 | 4959 \sim 2236 \cong 2236 | 5001 \sim 2285 \cong 2285 | 5043 \sim 2368 \cong 739$ $4918 \sim 821 \cong 821 | 4960 \sim 2850 \cong 2850 | 5002 \sim 2369 \cong 2369 | 5044 \sim 2391 \cong 2391$ $4919 \sim 731 \cong 731 \mid 4961 \sim 2364 \cong 2364 \mid 5003 \sim 2285 \cong 2285 \mid 5045 \sim 2229 \cong 2229$ $4920 \sim 731 \cong 731 | 4962 \sim 2371 \cong 2371 | 5004 \sim 2207 \cong 2207 | 5046 \sim 2287 \cong 2287$ $4921 \sim 821 \cong 821 | 4963 \sim 2364 \cong 2364 | 5005 \sim 1090 \cong 1090 | 5047 \sim 2368 \cong 739$ $4922 \sim 731 \cong 731 \mid 4964 \sim 2202 \cong 2202 \mid 5006 \sim 820 \cong 820 \mid 5048 \sim 2287 \cong 2287$ $4923 \sim 731 \cong 731 \mid 4965 \sim 2283 \cong 2283 \mid 5007 \sim 820 \cong 820 \mid 5049 \sim 2206 \cong 748$ $4924 \sim 2847 \cong 929 | 4966 \sim 2371 \cong 2371 | 5008 \sim 820 \cong 820 | 5050 \sim 2874 \cong 820$ $4925 \sim 2398 \cong 2398 \mid 4967 \sim 2283 \cong 2283 \mid 5009 \sim 730 \cong 730 \mid 5051 \sim 2388 \cong 821$ $4926 \sim 2361 \cong 2361 \mid 4968 \sim 2209 \cong 2209 \mid 5010 \sim 730 \cong 730 \mid 5052 \sim 2395 \cong 2395$ $4927 \sim 2398 \cong 2398 \mid 4969 \sim 2851 \cong 929 \mid 5011 \sim 820 \cong 820 \mid 5053 \sim 2388 \cong 821$ $4928 \sim 2236 \cong 2236 | 4970 \sim 2365 \cong 2365 | 5012 \sim 730 \cong 730 | 5054 \sim 2226 \cong 820$ $4929 \sim 2280 \cong 2280 | 4971 \sim 2396 \cong 2396 | 5013 \sim 730 \cong 730 | 5055 \sim 2307 \cong 2307$ $4930 \sim 2361 \cong 2361 | 4972 \sim 2365 \cong 2365 | 5014 \sim 1090 \cong 1090 | 5056 \sim 2395 \cong 2395$ $4931 \sim 2280 \cong 2280 | 4973 \sim 2203 \cong 2203 | 5015 \sim 820 \cong 820 | 5057 \sim 2307 \cong 2307$ $4932 \sim 2199 \cong 2199 | 4974 \sim 2284 \cong 2284 | 5016 \sim 820 \cong 820 | 5058 \sim 2233 \cong 2233$ $4933 \sim 2838 \cong 750 | 4975 \sim 2396 \cong 2396 | 5017 \sim 820 \cong 820 | 5059 \sim 1090 \cong 1090$ $4934 \sim 2399 \cong 2399 | 4976 \sim 2284 \cong 2284 | 5018 \sim 730 \cong 730 | 5060 \sim 820 \cong 820$ $4935 \sim 2352 \cong 740 | 4977 \sim 2234 \cong 2234 | 5019 \sim 730 \cong 730 | 5061 \sim 820 \cong 820$ $4936 \sim 2399 \cong 2399 | 4978 \sim 1090 \cong 1090 | 5020 \sim 820 \cong 820 | 5062 \sim 820 \cong 820$ $4937 \sim 2237 \cong 2237 | 4979 \sim 820 \cong 820 | 5021 \sim 730 \cong 730 | 5063 \sim 730 \cong 730$ $4938 \sim 2271 \cong 2271 \mid 4980 \sim 820 \cong 820 \mid 5022 \sim 730 \cong 730 \mid 5064 \sim 730 \cong 730$ $4939 \sim 2352 \cong 740 | 4981 \sim 820 \cong 820 | 5023 \sim 2880 \cong 730 | 5065 \sim 820 \cong 820$ $4940 \sim 2271 \cong 2271 | 4982 \sim 730 \cong 730 | 5024 \sim 2394 \cong 820 | 5066 \sim 730 \cong 730$ $4941 \sim 2190 \cong 750 | 4983 \sim 730 \cong 730 | 5025 \sim 2422 \cong 820 | 5067 \sim 730 \cong 730$ $4942 \sim 2853 \cong 2853 | 4984 \sim 820 \cong 820 | 5026 \sim 2394 \cong 820 | 5068 \sim 1090 \cong 1090$ $4943 \sim 2367 \cong 2367 | 4985 \sim 730 \cong 730 | 5027 \sim 2232 \cong 730 | 5069 \sim 820 \cong 820$ $4944 \sim 2423 \cong |2423| 4986 \sim 730 \cong 730 |5028 \sim 2313 \cong 2277 |5070 \sim 820 \cong 820$ $4945 \sim 2367 \cong 2367 | 4987 \sim 1090 \cong 1090 | 5029 \sim 2422 \cong 820 | 5071 \sim 820 \cong 820$ $4946 \sim 2205 \cong 775 \mid 4988 \sim 820 \cong 820 \mid 5030 \sim 2313 \cong 2277 \mid 5072 \sim 730 \cong 730$ $4947 \sim 2286 \cong 2286 \mid 4989 \sim 820 \cong 820$ $|5031 \sim 2260 \cong 802 | 5073 \sim 730 \cong 730$ $4948 \sim 2423 \cong 2423 \mid 4990 \sim 820 \cong 820 \mid 5032 \sim 2874 \cong 820 \mid 5074 \sim 820 \cong 820$ $4949 \sim 2286 \cong 2286 | 4991 \sim 730 \cong 730 | 5033 \sim 2388 \cong 821 | 5075 \sim 730 \cong 730$ $4950 \sim 2261 \cong 2261 | 4992 \sim 730 \cong 730 | 5034 \sim 2395 \cong 2395 | 5076 \sim 730 \cong 730$ $4951 \sim 2847 \cong 929 | 4993 \sim 820 \cong 820 | 5035 \sim 2388 \cong 821 | 5077 \sim 2854 \cong 847$

8. Group information

We use the following notation:

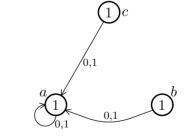
- Rels a list of some relators in the group. In most cases these are the first few relators in the length-lexicographic order, but in some cases (more precisely, for the automata numbered by 744, 753, 776, 840, 843, 858, 885, 888, 956, 965, 2209, 2210, 2213, 2234, 2261, 2274, 2293, 2355, 2364, 2396, 2402, 2423) there could be some shorter relators. In most cases the given list does not give a presentation of the group (exception are the finite and abelian groups, and the automata numbered by 820, 846, 870, 2212, 2240, 2294).
- SF these numbers represent the size of the factors $G/\operatorname{Stab}_G(n)$, for $n \geq 0$.
- Gr these numbers represent the first few values of the growth function $\gamma_G(n)$, for $n \geq 0$, with respect to the generating system a, b, c ($\gamma_G(n)$ counts the number of elements of length at most n in G).

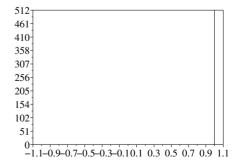
Automaton number 1

a = (a, a) Group: Trivial Group b = (a, a) Contracting: yes

c = (a, a) Self-replicating: yes

Rels: a, b, c



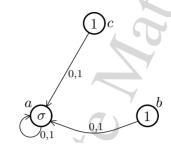


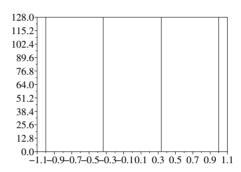
 $a = \sigma(a, a)$ Group: Klein Group b = (a, a) Contracting: yes c = (a, a) Self-replicating: no

Rels: $b^{-1}c$, a^2 , b^2 , abab

SF: $2^0,2^1,2^2,2^2,2^2,2^2,2^2,2^2,2^2$

Gr: 1,3,4,4,4,4,4,4,4,4





Automaton number 731

 $a = \sigma(b, a)$ Group: \mathbb{Z}

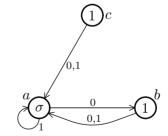
b = (a, a) Contracting: yes

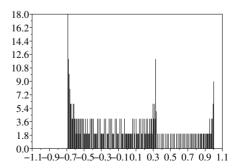
c = (a, a) Self-replicating: yes

Rels: $b^{-1}c$, ba^2

SF: $2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8$

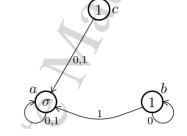
Gr: 1,5,9,13,17,21,25,29,33,37,41

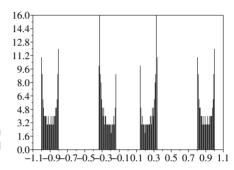




 $a = \sigma(a, a)$ Group: $C_2 \ltimes (\mathbb{Z} \wr C_2)$ b = (b, a) Contracting: yes c = (a, a) Self-replicating: noRels: $a^2, b^2, c^2, (ac)^2, (acbab)^2$ SF: $2^0, 2^1, 2^3, 2^6, 2^8, 2^{10}, 2^{12}, 2^{14}, 2^{16}$

Gr: 1,4,9,17,30,47,68,93,122,155,192





Automaton number 740

 $a = \sigma(b, a)$ Group:

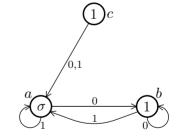
b = (b, a) Contracting: no

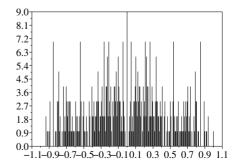
c = (a, a) Self-replicating: no

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $a^{-1}c^{-1}ac^{-1}b^2$, $[a,b]^2$

 $[a, b]^{-1}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{11}, 2^{14}, 2^{16}, 2^{18}$

Gr: 1,7,33,135,495,1725





Automaton number 741

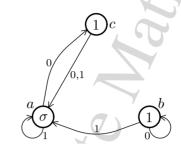
 $a = \sigma(c, a)$ Group:

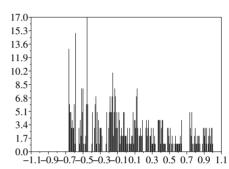
b = (b, a)Contracting: no c = (a, a)Self-replicating: yes

Rels: ca^2 , $b^{-1}a^{-3}b^{-1}ababa$, $b^{-1}a^{-6}b^{-1}a^{-2}ba^{-2}ba^{-2}$

SF: $2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,29,115,441,1643





Automaton number 744

 $a = \sigma(c, b)$ Group:

b = (b, a)Contracting: no

c = (a, a)Self-replicating: yes

Rels:

 $[a^2ca^{-1}bc^{-1}b^{-1}a^{-1}, aca^{-1}bc^{-1}b^{-1}], \\ abcb^{-1}ac^{-1}a^{-2}bcb^{-1}ab^{-1}aca^{-1}bc^{-1}a^{-1}bc^{-1}b^{-1}$

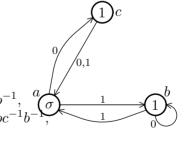
 $abcb^{-1}ab^{-1}a^{-2}bcb^{-1}ac^{-1}aba^{-1}bc^{-1}b^{-1}ca^{-1}bc$

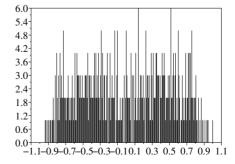
 $abcb^{-1}ab^{-1}a^{-2}bcb^{-1}ab^{-1}a$.

 $ba^{-1}bc^{-1}a^{-1}bc^{-1}b^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,937,4687



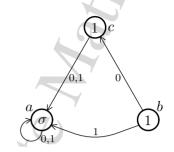


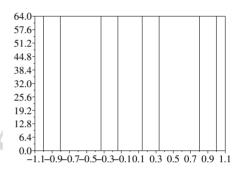
 $a = \sigma(a, a)$ Group: $D_4 \times C_2$

b = (c, a) Contracting: yes c = (a, a) Self-replicating: no

Rels: a^2 , b^2 , c^2 , acac, bcbc, abababab

SF: 2⁰,2¹,2³,2⁴,2⁴,2⁴,2⁴,2⁴,2⁴ Gr: 1,4,8,12,15,16,16,16,16,16,16





Automaton number 749

 $a = \sigma(b, a)$ Group:

b = (c, a) Contracting: n/a

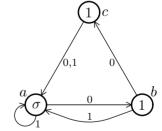
c = (a, a) Self-replicating: yes

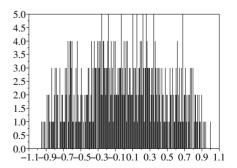
Rels: $a^{-1}c^{-1}bab^{-1}a^{-1}cb^{-1}ab$,

 $a^{-1}c^{-1}bac^{-1}a^{-1}cb^{-1}ac$

 $\mathrm{SF} \colon 2^{0}, \! 2^{1}, \! 2^{3}, \! 2^{6}, \! 2^{12}, \! 2^{23}, \! 2^{45}, \! 2^{88}, \! 2^{174}$

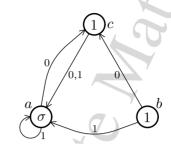
Gr: 1,7,37,187,937,4667

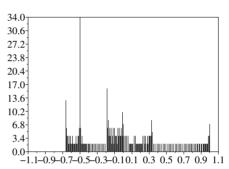




 $a = \sigma(c, a)$ Group: $C_2 \wr \mathbb{Z}$ b = (c, a)Contracting: yes c = (a, a)Self-replicating: no

Rels: ca^2 , $(a^{-1}b)^2$, [b, c]SF: $2^0, 2^1, 2^3, 2^5, 2^7, 2^9, 2^{11}, 2^{13}, 2^{15}$ Gr: 1,7,23,49,87,137,199,273,359





Automaton number 752

Group: virtually \mathbb{Z}^3 $a = \sigma(b, b)$

b = (c, a)Contracting: yes

c = (a, a)Self-replicating: no

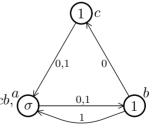
Rels: a^2 , b^2 , c^2 , $(acbab)^2$, $(acacb)^2$,

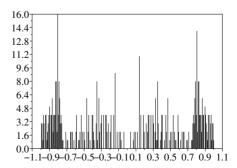
 $(abc)^2(acb)^2$, acbcbabacbcbab, abcbacbabcbacb, $acbcacbacbcacb, acacbcbacacbcb, abc(bca)^2cbcbacb, acacbcbacbcb, abc(bca)^2cbcbacb, acacbcbacacbcb, acacbcbacacbcbacacbcb, acacbcbac$

 $a(cb)^3aba(cb)^3ab$, abcbcbacbabcbcbacb, $a\dot{c}b\dot{c}bcacbacb\dot{c}bcacb$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{8}, 2^{10}, 2^{11}, 2^{13}$

Gr: 1,4,10,22,46,84,140,217,319,448





Automaton number 753

 $a = \sigma(c, b)$ Group:

b = (c, a) Contracting: no

c = (a, a) Self-replicating: yes

Rels: $aba^{-1}b^{-1}ab^{-1}ca^{-1}ba^{-1}b^{-1}ab^{-1}cac^{-1}b$

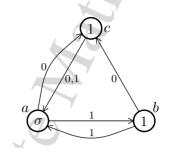
 $a^{-1}bab^{-1}a^{-1}c^{-1}ba^{-1}bab^{-1},$

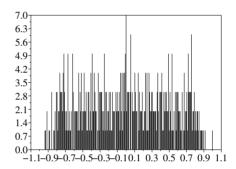
 $aba^{-1}b^{-1}ab^{-1}ca^{-1}c^{-1}ba^{-1}c^{-1}bab^{-1}ca\cdot$

 $c^{-1}ba^{-1}bab^{-1}a^{-1}c^{-1}ba^{-1}b^{-1}cab^{-1}c\\$

 $\mathrm{SF} \colon 2^0,\!2^1,\!2^3,\!2^6,\!2^{12},\!2^{23},\!2^{45},\!2^{88},\!2^{174}$

Gr: 1,7,37,187,937,4687





Automaton number 771

 $a = \sigma(c, b)$ Group: \mathbb{Z}^2

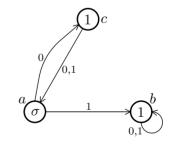
b = (b, b) Contracting: yes

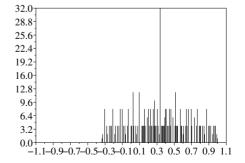
c = (a, a) Self-replicating: yes

Rels: $b, a^{-1}c^{-1}ac$

SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}$

Gr: 1,5,13,25,41,61,85,113,145,181,221Limit space: 2-dimensional torus T_2





Automaton number 775

 $a = \sigma(a, a)$ Group: $C_2 \ltimes IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$

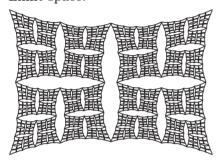
b = (c, b) Contracting: yes c = (a, a) Self-replicating: yes

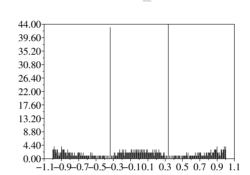
Rels: a^2 , b^2 , c^2 , acac, acbcbabcbcabcbabcb

SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$

Gr: 1,4,9,17,30,51,85,140,229,367,579

Limit space:





Automaton number 776

 $a = \sigma(b, a)$ Group:

b = (c, b) Contracting: no

c = (a, a) Self-replicating: yes

 $\begin{array}{l} \text{Rels: } aba^{-1}b^{-1}a^2c^{-1}ab^{-1}a^{-1}bcb^{-1}ac^{-1}a^{-1}ba^{-1} \cdot \\ b^{-1}a^2c^{-1}ab^{-1}a^{-1}bcb^{-1}ac^{-1}aca^{-1}bc^{-1}b^{-1}ab \cdot \\ a^{-1}ca^{-2}bab^{-1}a^{-1}ca^{-1}bc^{-1}b^{-1}aba^{-1}ca^{-2}bab^{-1}, \\ aba^{-1}b^{-1}a^2c^{-1}ab^{-1}a^{-1}bcb^{-1}ac^{-1}a^{-1}cba^{-1} \cdot \end{array}$

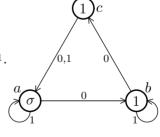
 $b^{-1}a^2c^{-1}ab^{-1}a^{-1}bc^{-1}b^{-1}aba^{-1}ca^{-2}\cdot$

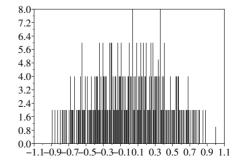
 $\begin{array}{l} bab^{-1}aca^{-1}bc^{-1}b^{-1}aba^{-1}ca^{-2}bab^{-1} \cdot \\ a^{-1}ba^{-1}b^{-1}a^{2}c^{-1}ab^{-1}a^{-1}bcb^{-1} \cdot \end{array}$

 $aba^{-1}ca^{-2}bab^{-1}c^{-1}$

SF: $2^0, 2^1, 2^2, 2^4, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}$

Gr: 1,7,37,187,937,4687

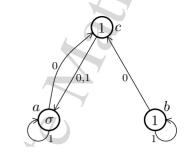


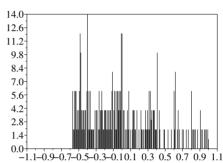


 $a = \sigma(c, a)$ Group:

 $\begin{array}{ll} b=(c,b) & \text{Contracting: } no \\ c=(a,a) & \text{Self-replicating: } yes \\ \text{Rels: } ca^2, \ b^{-1}a^5b^{-1}a^{-1}ba^{-3}ba^{-1} \\ \text{SF: } 2^0,2^1,2^2,2^4,2^7,2^{13},2^{24},2^{46},2^{89} \end{array}$

Gr: 1,7,29,115,441,1695





Automaton number 779

 $a = \sigma(b, b)$ Group:

b = (c, b) Contracting: yes

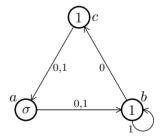
c = (a, a) Self-replicating: yes

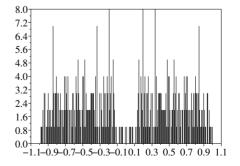
Rels: a^2 , b^2 , c^2 , acabcabcbabacabcabcbab,

acbcbacacabcbcabcbabcb

SF: $2^0, 2^1, 2^2, 2^4, 2^6, 2^9, 2^{15}, 2^{26}, 2^{48}$

 $Gr:\ 1,4,10,22,46,94,190,382,766,1534,3070,6120$



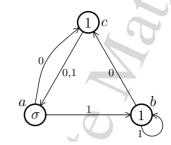


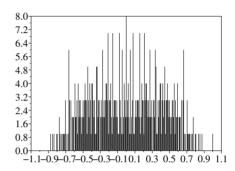
 $a = \sigma(c, b)$ Group:

b = (c, b)Contracting: no c = (a, a)Self-replicating: yes

Rels: $(a^{-1}b)^2$, $[ba^{-1}, c]$ SF: $2^0, 2^1, 2^2, 2^4, 2^6, 2^9, 2^{15}, 2^{27}, 2^{49}$

Gr: 1,7,35,159,705,3107





Automaton number 802

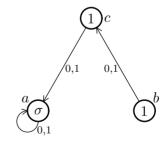
 $a = \sigma(a, a)$ Group: $C_2 \times C_2 \times C_2$

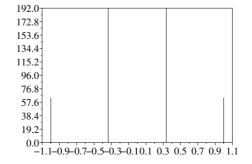
Contracting: yes b = (c, c)

Self-replicating:_no c = (a, a)

Rels: a^2 , b^2 , c^2 , [a, b], [a, c], [b, c]SF: $2^0, 2^1, 2^2, 2^3, 2^3, 2^3, 2^3, 2^3, 2^3$

Gr: 1,4,7,8,8,8,8,8,8,8,8



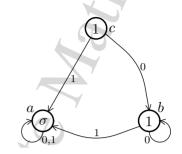


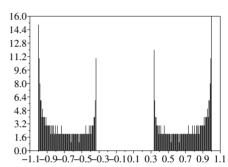
 $a = \sigma(a, a)$ Group: D_{∞}

b = (b, a)Contracting: yes c = (b, a)Self-replicating: yes

Rels: $b^{-1}c$, a^2 , b^2

SF: 2⁰,2¹,2³,2⁴,2⁵,2⁶,2⁷,2⁸,2⁹ Gr: 1,3,5,7,9,11,13,15,17,19,21





Automaton number 821

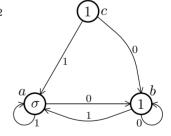
Group: Lamplighter group $\mathbb{Z} \wr C_2$ $a = \sigma(b, a)$

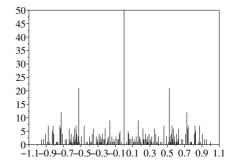
Contracting: no b = (b, a)

c = (b, a)Self-replicating: yes

Rels: $b^{-1}c$, $(a^{-1}b)^2$, $[a, b]^2$, $a^{-3}baba^{-2}b^{-1}a^2b$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{6}, 2^{8}, 2^{9}, 2^{10}, 2^{11}$ Gr: 1,5,15,39,92,208,452,964,2016



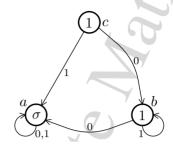


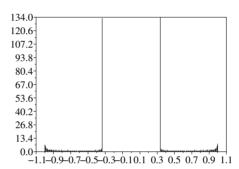
 $a = \sigma(a, a)$ Group: $C_2 \ltimes \langle s, t \mid s^2 = t^2 \rangle$

b = (a, b) Contracting: yes c = (b, a) Self-replicating: no

Rels: a^2 , b^2 , c^2 , abcacb

SF: 2⁰,2¹,2³,2⁵,2⁷,2⁹,2¹¹,2¹³,2¹⁵ Gr: 1,4,10,19,31,46,64,85,109,136





Automaton number 840

 $a = \sigma(c, a)$ Group:

b = (a, b) Contracting: no

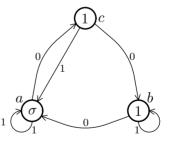
c = (b, a) Self-replicating: yes

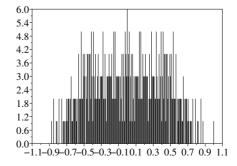
Rels: $abac^{-1}a^{-2}bac^{-1}aca^{-1}b^{-1}ca^{-1}b^{-1},$ $abac^{-1}a^{-2}cac^{-1}b^{-1}caca^{-1}b^{-1}c^{-1}bca^{-1}c^{-1},$

 $\begin{array}{l} acac^{-1}b^{-1}ca^{-2}bac^{-1}ac^{-1}bca^{-2}b^{-1},\\ acac^{-1}b^{-1}ca^{-2}cac^{-1}b^{-1}cac^{-1}bca^{-1}c^{-2}bca^{-1}c \end{array}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{10}, 2^{15}, 2^{25}, 2^{41}$

Gr: 1,7,37,187,937,4687





 $a = \sigma(c, b)$ Group:

b = (a, b) Contracting: no

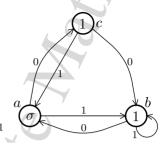
c = (b, a) Self-replicating: yes

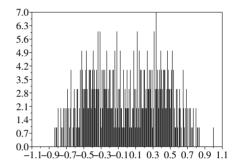
Rels: $acab^{-1}a^{-2}cab^{-1}aba^{-1}c^{-1}ba^{-1}c^{-1}$, $acab^{-1}a^{-2}cb^{-1}ab^{-1}caba^{-1}c^{-2}ba^{-1}bc^{-1}$,

 $\begin{array}{l} acb^{-1}ab^{-1}ca^{-2}cab^{-1}ac^{-1}ba^{-1}bc^{-1}ba^{-1}c^{-1},\\ acb^{-1}ab^{-1}ca^{-2}cb^{-1}ab^{-1}cac^{-1}ba^{-1}bc^{-2}ba^{-1}bc^{-1} \end{array}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{24}, 2^{43}, 2^{81}$

Gr: 1,7,37,187,937,4687





Automaton number 846

 $a = \sigma(c, c)$ Group: $C_2 * C_2 * C_2$

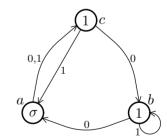
b = (a, b) Contracting: no

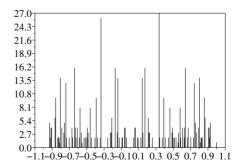
c = (b, a) Self-replicating: no

Rels: a^2 , b^2 , c^2

SF: 2⁰,2¹,2³,2⁵,2⁷,2¹⁰,2¹³,2¹⁶,2¹⁹

Gr: 1,4,10,22,46,94,190,382,766,1534

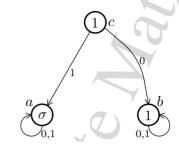


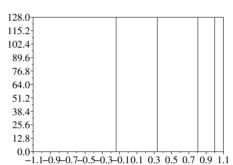


 $a = \sigma(a, a)$ Group: D_4

b = (b, b)Contracting: yes c = (b, a)Self-replicating: no

Rels: $b, a^2, c^2, acacacac$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}$ Gr: 1,3,5,7,8,8,8,8,8,8





Automaton number 849

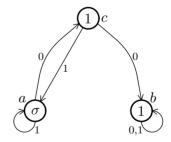
 $a = \sigma(c, a)$ Group:

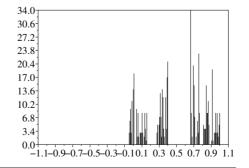
b = (b, b)Contracting: no

Self-replicating: _yes c = (b, a)

 $\begin{array}{l} \text{Rels: } b, \, [ac^{-1}a^{-1}, c], \\ [a^2, c^{-1}] \cdot [c, a^{-2}], \, [a^{-1}, c^{-2}] \cdot [a^{-1}, c^2] \\ \text{SF: } 2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174} \end{array}$

Gr: 1,5,17,53,153,421,1125,2945,7589





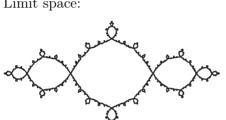
Group: $IMG(z^2-1)$ $a = \sigma(c, b)$

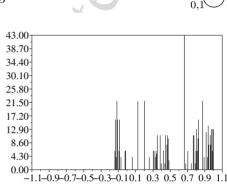
Contracting: yes b = (b, b)c = (b, a)Self-replicating: yes

Rels: b, $[ac^{-1}a^{-1}, c]$, $\begin{array}{c} [c,a^2] \cdot [c,a^{-2}], \ [a^{-1},c^{-2}] \cdot [a^{-1},c^2] \\ \mathrm{SF:} \ 2^0,2^1,2^3,2^6,2^{12},2^{23},2^{45},2^{88},2^{174} \end{array}$

Gr: 1,5,17,53,153,421,1125,2945,7545

Limit space:





Automaton number 856

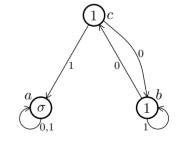
 $a = \sigma(a, a)$ Group: $C_2 \ltimes G_{2850}$

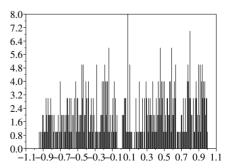
b = (c, b)Contracting: no

Self-replicating: yes c = (b, a)

Rels: a^2 , b^2 , c^2 , acbcacbcabcacacacbSF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,190,382,766, 1525,3025,5998,11890,23532





Automaton number 857

 $a = \sigma(b, a)$ Group:

b = (c, b) Contracting: no

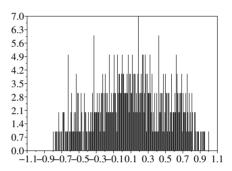
c = (b, a) Self-replicating: yes

Rels: $(a^{-1}c)^2$, $(a^{-1}b)^4$, $(a^{-1}b^{-1}ac)^2$,

 $\overset{\smile}{\mathrm{SF}}\colon\overset{\smile}{2^0},\!2^1,\!2^3,\!2^7,\!2^{13},\!2^{25},\!2^{47},\!2^{90},\!2^{176}$

Gr: 1,7,35,165,758,3460





Automaton number 858

 $a = \sigma(c, a)$ Group:

b = (c, b) Contracting: no

c = (b, a) Self-replicating: yes

Rels: $abca^{-1}c^{-1}ab^{-1}a^2c^{-1}b^{-1}a^{-1}bca^{-1}c^{-1}a\cdot b^{-1}a^2c^{-1}b^{-1}abca^{-2}ba^{-1}cac^{-1}b^{-1}a^{-1}\cdot b^{-1}a^{-1}$

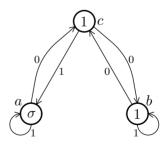
 $bca^{-2}ba^{-1}cac^{-1}b^{-1}$.

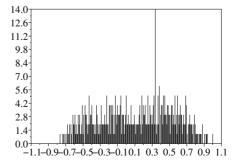
 $abca^{-1}c^{-1}ab^{-1}a^2c^{-1}b^{-1}a^{-1}cba^{-1}b^{-1}ab^{-1}a\cdot$

 $bca^{-2}ba^{-1}cac^{-1}b^{-1}a^{-1}ba^{-1}bab^{-1}c^{-1}$

 $\mathrm{SF} \colon 2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$

Gr: 1,7,37,187,937,4687



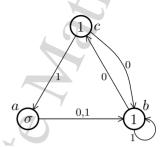


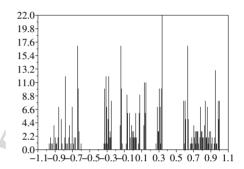
 $a = \sigma(b, b)$ Group:

b = (c, b) Contracting: no c = (b, a) Self-replicating: yes

Rels: a^2 , b^2 , c^2 , acbacacabcabab SF: $2^0,2^1,2^3,2^7,2^{13},2^{24},2^{46},2^{89},2^{175}$

Gr: 1,4,10,22,46,94,190,375,731,1422,2762,5350





Automaton number 861

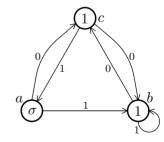
 $a = \sigma(c, b)$ Group:

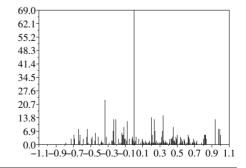
b = (c, b) Contracting: n/a

c = (b, a) Self-replicating: yes

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[a,b]^2$, $[b,c]^2$ SF: $2^0,2^1,2^3,2^7,2^{13},2^{25},2^{47},2^{90},2^{176}$

Gr: 1,7,33,143,599,2485





Automaton number 864

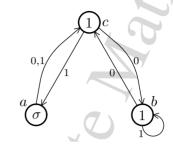
 $a = \sigma(c, c)$ Group:

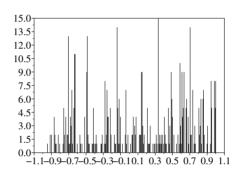
b = (c, b)Contracting: no Self-replicating: yes c = (b, a)

Rels: a^2 , b^2 , c^2 , abcabcbabcbacbababSF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,190,382,766,1525,

3025,5998,11890





Automaton number 866

 $a = \sigma(b, a)$ Group:

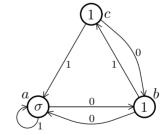
b = (a, c)Contracting: no

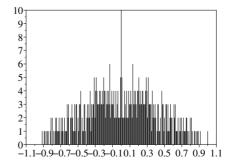
Self-replicating: yes c = (b, a)

Rels: $(ca^{-1})^2$, $ba^{-2}cab^{-1}ab^{-1}c^{-1}aba^{-1}$ $cab^{-1}cb^{-1}a^{-1}cbc^{-1}ba^{-2}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{92}$

Gr: 1,7,35,165,769,3575



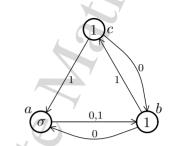


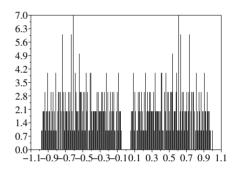
 $a = \sigma(b, b)$ Group:

b = (a, c) Contracting: no c = (b, a) Self-replicating: yes

Rels: a^2 , b^2 , c^2 , acbcacbcabcacacacb SF: $2^0,2^1,2^3,2^4,2^6,2^9,2^{15},2^{26},2^{48}$

 $Gr:\ 1,4,10,22,46,94,190,382,766,1525$





Automaton number 870

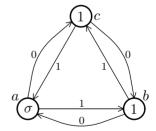
 $a = \sigma(c, b)$ Group: BS(1, 3)

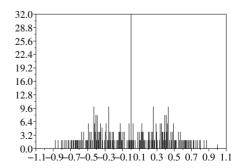
b = (a, c) Contracting: no

c = (b, a) Self-replicating: yes

Rels: $a^{-1}ca^{-1}b$, $(b^{-1}a)^{b^{-1}}(b^{-1}a)^{-3}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}$

Gr: 1,7,33,127,433,1415





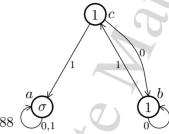
Group: $C_2 \ltimes G_{2852}$ $a = \sigma(a, a)$ b = (b, c)Contracting: no c = (b, a)Self-replicating: yes

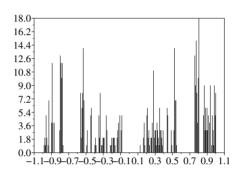
Rels: a^2 , b^2 , c^2 , abcabcacbacb,

abcbcabcacbcbacb

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,184,352,664,1244,2320,4288





Automaton number 875

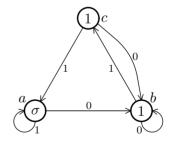
 $a = \sigma(b, a)$ Group:

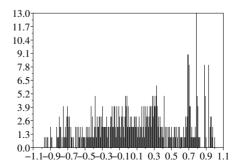
b = (b, c)Contracting: no

Self-replicating: yes c = (b, a)

Rels: $(a^{-1}c)^2$, $(b^{-1}c)^2$, $(a^{-1}b)^4$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,33,143,607,2563





 $a = \sigma(c, a)$ Group:

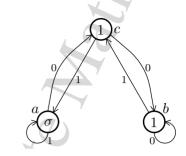
b = (b, c) Contracting: no

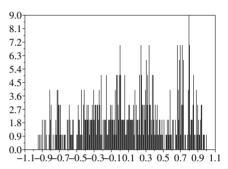
c = (b, a) Self-replicating: yes

Rels: $a^{-2}bcb^{-2}a^2c^{-1}b$, $a^{-2}cb^{-1}a^2c^{-2}bc$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,937,4667





Automaton number 878

 $a = \sigma(b, b)$ Group: $C_2 \ltimes IMG(1 - \frac{1}{z^2})$

b = (b, c) Contracting: yes

c = (b, a) Self-replicating: yes

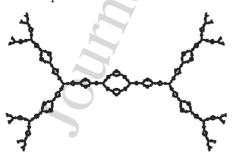
Rels: a^2 , b^2 , c^2 , abcabcacbacb,

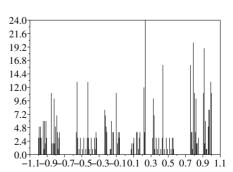
abcbcabcacbcbacb

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,184,352,664,1244,2296,4198,7612

Limit space:





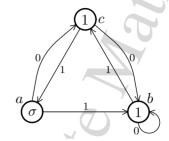
Automaton number 879

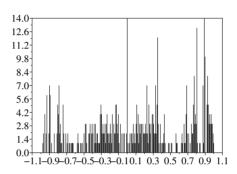
 $a = \sigma(c, b)$ Group:

b = (b, c) Contracting: no c = (b, a) Self-replicating: yes

Rels: $(a^{-1}b)^2$, $a^{-1}ca^{-1}cb^{-1}ac^{-1}ac^{-1}b$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,35,165,769,3567





Automaton number 882

 $a = \sigma(c, c)$ Group:

b = (b, c) Contracting: n/a

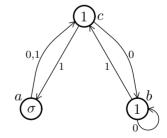
c = (b, a) Self-replicating: yes

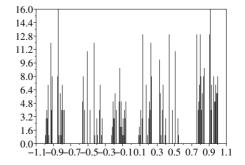
Rels: a^2 , b^2 , c^2 , abcabcacbacb,

abcbcabcacbcbacb

SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,184,352,664,1244





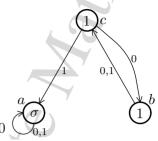
 $a = \sigma(a, a)$ Group: $C_2 \ltimes G_{2841}$ b = (c, c) Contracting: no

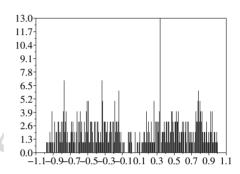
c = (b, a) Self-replicating: yes

Rels: a^2 , b^2 , c^2 , acbcbacbcacbcabcbcabab, acbacbcacabacbacbacbcacab

SF: $2^{0},2^{1},2^{3},2^{6},2^{9},2^{14},2^{24},2^{43},2^{80}$

Gr: 1,4,10,22,46,94,190,382,766,1534,3070,6120





Automaton number 884

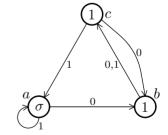
 $a = \sigma(b, a)$ Group:

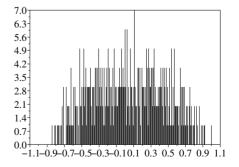
b = (c, c) Contracting: no

c = (b, a) Self-replicating: yes

Rels: $(a^{-1}c)^2$, $(b^{-1}c)^2$, $[b, ac^{-1}]$ SF: $2^0, 2^1, 2^3, 2^6, 2^9, 2^{15}, 2^{27}, 2^{49}, 2^{93}$

Gr: 1,7,33,135,529,2051





Automaton number 885

 $a = \sigma(c, a)$ Group:

b = (c, c) Contracting: no

c = (b, a) Self-replicating: yes

Rels: $acba^{-1}b^{-1}ac^{-1}a^{-1}cba^{-1}b^{-1}ac^{-1}aca^{-1}$.

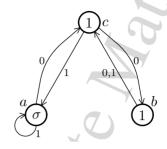
 $bab^{-1}c^{-1}a^{-1}ca^{-1}bab^{-1}c^{-1}$,

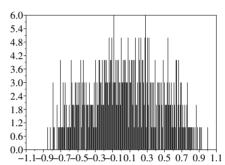
 $acba^{-1}b^{-1}ac^{-1}a^{-1}ca^{-1}c^{-1}b^{-1}a^{3}c^{-1}aca^{-1}b\cdot \\$

 $ab^{-1}c^{-1}a^{-1}ca^{-3}bcac^{-1}$

SF: $2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,937,4687





Automaton number 887

 $a = \sigma(b, b)$ Group:

b = (c, c) Contracting: n/a

c = (b, a) Self-replicating: yes

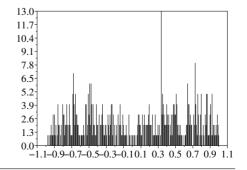
Rels: a^2 , b^2 , c^2 , babacbcbacbcacbcabcbca,

bacacbcabcabcacbcabca

 $\mathrm{SF} \colon 2^{0}, \! 2^{1}, \! 2^{3}, \! 2^{6}, \! 2^{9}, \! 2^{14}, \! 2^{24}, \! 2^{43}, \! 2^{80}$

Gr: 1,4,10,22,46,94,190,382,766,1534,3070,6120





 $a = \sigma(c, b)$ Group:

b = (c, c)Contracting: no

c = (b, a)Self-replicating: yes

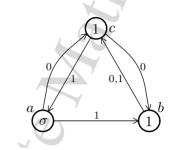
Rels: $aca^{-1}ba^{-2}ca^{-1}bab^{-1}ac^{-1}b^{-1}ac^{-1}$,

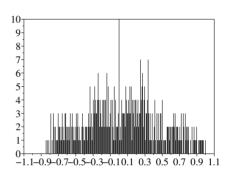
 $aca^{-1}ba^{-3}bab^{-1}a^{2}b^{-1}ac^{-1}a^{-1}ba^{-1}b^{-1}a$ $bab^{-1}a^{-1}ca^{-1}b^2a^{-1}b^{-1}ab^{-1}ac^{-1}$.

 $bab^{-1}a^{-2}bab^{-1}aba^{-2}b^{-1}a$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,937,4687





Automaton number 891

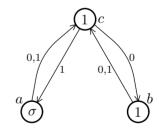
Group: $C_2 \ltimes Lampighter$ $a = \sigma(c, c)$

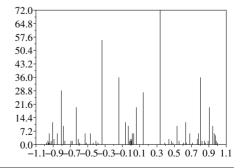
Contracting: no b = (c, c)

c = (b, a)Self-replicating: yes

Rels: a^2 , b^2 , c^2 , abab, $(acb)^4$, $\begin{array}{l} [acaca,bcacb],\,[acaca,bcbcb] \\ \mathrm{SF}\colon 2^0,2^1,2^3,2^6,2^7,2^9,2^{10},2^{11},2^{12} \end{array}$

Gr: 1,4,9,17,30,51,82,128,198,304

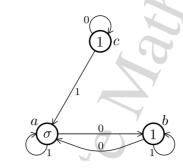


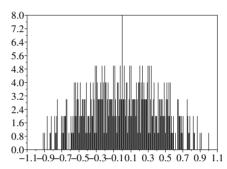


 $a = \sigma(b, a)$ Group:

 $\begin{array}{ll} b=(a,b) & \text{Contracting: } n/a \\ c=(c,a) & \text{Self-replicating: } yes \\ \text{Rels: } (a^{-1}b)^2, [a,b]^2, (a^{-1}c^{-1}ab)^2 \\ \text{SF: } 2^0,2^1,2^3,2^5,2^9,2^{15},2^{26},2^{48},2^{92} \end{array}$

Gr: 1,7,35,165,757,3447





Automaton number 923

 $a = \sigma(b, b)$ Group:

b = (a, b) Contracting: yes

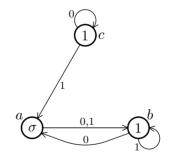
c = (c, a) Self-replicating: yes

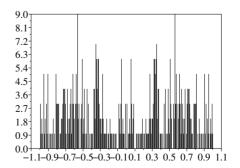
Rels: a^2 , b^2 , c^2 , abcabcbabcbacbabab

SF: $2^0, 2^1, 2^3, 2^4, 2^6, 2^9, 2^{15}, 2^{26}, 2^{48}$

Gr: 1,4,10,22,46,94,190,382,766,

 $1525,\!3025,\!5998,\!11890$





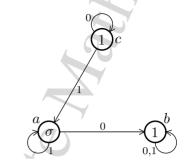
 $a = \sigma(b, a)$ Group:

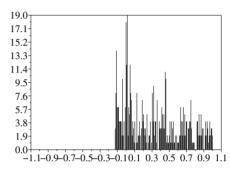
b = (b, b) Contracting: no c = (c, a) Self-replicating: yes

Rels: $b, a^{-3}cac^{-1}ac^{-1}ac$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

 $Gr:\ 1,5,17,53,161,475,1387$





Automaton number 937

 $a = \sigma(a, a)$ Group: $C_2 \ltimes G_{929}$

b = (c, b) Contracting: no

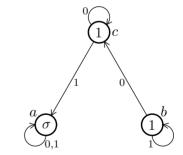
c = (c, a) Self-replicating: yes

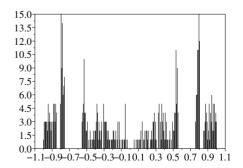
Rels: a^2 , b^2 , c^2 , abcabcacbacb,

abcbcabcacbcbacb

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,4,10,22,46,94,184,352,664,1244





Automaton number 938

 $a = \sigma(b, a)$ Group:

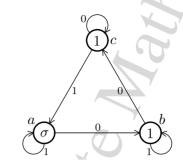
b = (c, b)Contracting: no

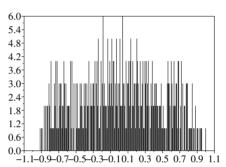
Self-replicating: yes c = (c, a)

Rels: $a^{-2}bcb^{-2}a^2c^{-1}b$, $a^{-2}cb^{-1}a^2c^{-2}bc$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,937,4667





Automaton number 939

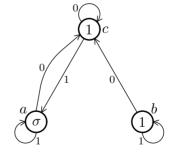
 $a = \sigma(c, a)$ Group:

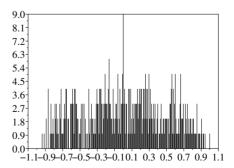
b = (c, b)Contracting: no

Self-replicating: yes c = (c, a)

Rels: $(a^{-1}c)^2$, $(a^{-2}cb)^2$, $[a,c]^2$, $[ca^{-1},ba^{-1}b]$, $a^{-1}b^{-1}abc^{-1}a^{-1}bca^{-1}b$ SF: $2^0,2^1,2^3,2^7,2^{13},2^{25},2^{47},2^{90},2^{176}$

Gr: 1,7,35,165,757,3427





Automaton number 941

 $a = \sigma(b, b)$ Group: $C_2 \ltimes IMG(z^2 - 1)$

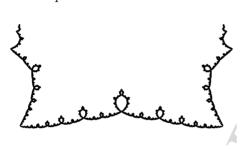
b = (c, b) Contracting: yes c = (c, a) Self-replicating: yes

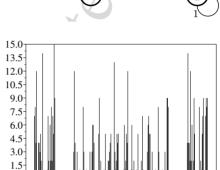
Rels: a^2 , b^2 , c^2 , abcabcacbacb,

abcbcabcacbcbacb

SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$ Gr: 1,4,10,22,46,94,184,352,664,1244

Limit space:





Automaton number 942

 $a = \sigma(c, b)$ Group: Contains Lamplighter group

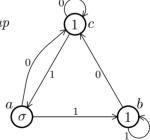
b = (c, b) Contracting: no

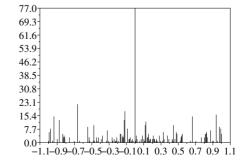
c = (c, a) Self-replicating: yes

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[a,b]^2$, $[b,c]^2$,

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,33,143,597,2465





Automaton number 956

 $a = \sigma(b, a)$ Group:

Contracting: no b = (b, c)

c = (c, a)Self-replicating: yes

Rels: $acba^{-1}b^{-1}ab^{-1}a^{-1}cba^{-1}b^{-1}ab^{-1}aba^{-1}$.

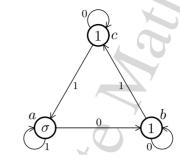
 $bab^{-1}c^{-1}a^{-1}ba^{-1}bab^{-1}c^{-1} \\$

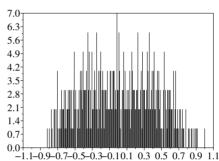
 $\begin{array}{l} acba^{-1}b^{-1}ab^{-1}a^{-1}b^{-1}ca^{-1}caba^{-1}bab^{-1}c^{-1}\cdot\\ a^{-2}bc^{-1}baba^{-1}bab^{-1}c^{-1}a^{-1}b^{-1}cb^{-1}a^{2}cb\cdot \end{array}$

 $a^{-1}b^{-1}ab^{-1}a^{-1}c^{-1}ac^{-1}b$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$

Gr: 1,7,37,187,937,4687





Automaton number 957

 $a = \sigma(c, a)$ Group:

b = (b, c)Contracting: no

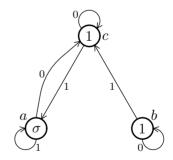
c = (c, a)Self-replicating: yes

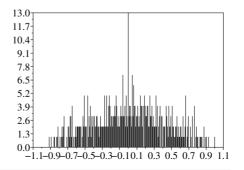
Rels: $(a^{-1}c)^2$, $(b^{-1}c)^2$, $[a, c]^2$,

 $[b,c]^2$, $(a^{-1}c)^4$

SF: 20,21,23,27,213,225,247,290,2176

Gr: 1,7,33,143,599,2485



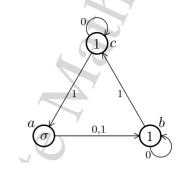


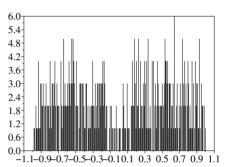
 $a = \sigma(b, b)$ Group:

b = (b, c) Contracting: no c = (c, a) Self-replicating: yes

Rels: a^2 , b^2 , c^2 , abcabcbabcbabcbababSF: $2^0,2^1,2^3,2^7,2^{13},2^{24},2^{46},2^{89},2^{175}$

Gr: 1,4,10,22,46,94,190,382,766,1525





Automaton number 960

 $a = \sigma(c, b)$ Group:

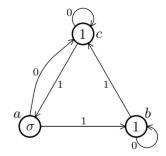
b = (b, c) Contracting: no

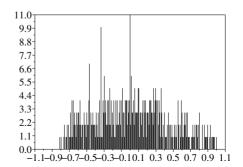
c = (c, a) Self-replicating: yes

Rels: $(a^{-1}b)^2$, $(a^{-2}bc)^2$, $(a^{-1}c)^4$,

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,35,165,758,3460





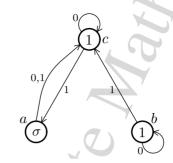
Automaton number 963

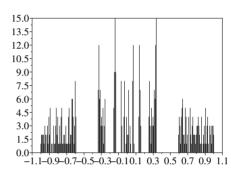
 $a = \sigma(c, c)$ Group:

b = (b, c) Contracting: no c = (c, a) Self-replicating: yes Rels: a^2 , b^2 , c^2 , acbacacabcabab SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

 $Gr:\ 1,4,10,22,46,94,190,375,731,$

1422,2762,5350,10322





Automaton number 965

 $a = \sigma(b, a)$ Group:

b = (c, c) Contracting: no

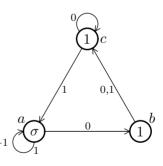
c = (c, a) Self-replicating: yes

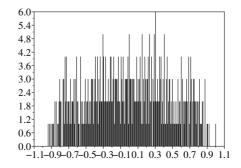
Rels: $acb^{-1}a^{-1}cb^{-1}abc^{-1}a^{-1}bc^{-1}$

 $acb^{-1}a^{-1}cac^{-1}b^{-1}cbc^{-2}bca^{-1}c^{-1},$

 $acac^{-1}b^{-1}ca^{-2}cb^{-1}a^{2}c^{-1}bca^{-1}c^{-1}a^{-1}bc^{-1},$

 $\begin{array}{l} acac^{-1}b^{-1}ca^{-2}cac^{-1}b^{-1}cac^{-1}bca^{-1}c^{-2}bca^{-1}\\ \text{SF: } 2^{0},2^{1},2^{3},2^{6},2^{12},2^{23},2^{45},2^{88},2^{174} \end{array}$



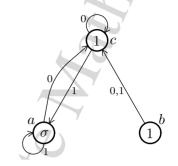


 $a = \sigma(c, a)$ Group:

b = (c, c)Contracting: no c = (c, a)Self-replicating: no

 $\begin{array}{l} \text{Rels: } (a^{-1}c)^2, \, (b^{-1}c)^2, \, [ca^{-1}, b], \\ [a, b]^2, \, (a^{-2}b^2)^2, \, (a^{-1}b)^4, \, [[c^{-1}, a^{-1}], cb^{-1}] \\ \text{SF: } 2^0, 2^1, 2^3, 2^6, 2^9, 2^{11}, 2^{14}, 2^{16}, 2^{18} \end{array}$

Gr: 1,7,33,135,495,1725





Automaton number 968

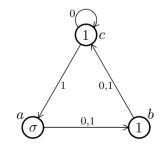
Group: Virtually \mathbb{Z}^5 $a = \sigma(b, b)$

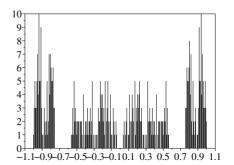
b = (c, c)Contracting: yes

c = (c, a)Self-replicating: no

Rels: a^2 , b^2 , c^2 , $(abc)^2(acb)^2$, $(cbcbaba)^2$, $(cacbcba)^2$, $(cabacbaba)^2$, $((ac)^4b)^2$ SF: $2^0, 2^1, 2^3, 2^6, 2^9, 2^{13}, 2^{17}, 2^{21}, 2^{25}$

Gr: 1,4,10,22,46,94,184,338,600,1022





Automaton number 969

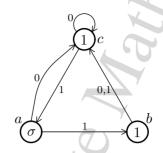
 $a = \sigma(c, b)$ Group:

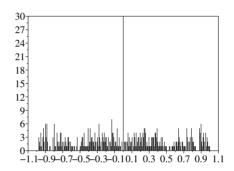
b = (c, c) Contracting: n/ac = (c, a) Self-replicating: yes

Rels: $a^{-1}c^{-1}bab^{-1}a^{-1}cb^{-1}ab$, $a^{-1}c^{-1}bac^{-1}a^{-1}cb^{-1}ac$

SF: $2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,937,4667





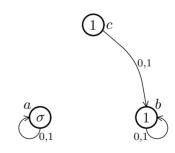
Automaton number 1090

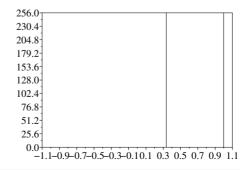
 $a = \sigma(a, a)$ Group: C_2

b = (b, b) Contracting: yes c = (b, b) Self-replicating: no

Rels: b, c, a^2

Gr: 1,2,2,2,2,2,2,2,2,2





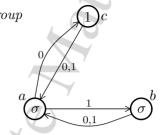
 $a = \sigma(c, b)$ Group: Contains Lamplighter group

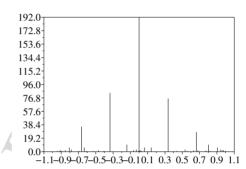
 $b = \sigma(a, a)$ Contracting: no c = (a, a)Self-replicating: yes

Rels: [b,c], b^2c^2 , a^4 , b^4 , $(a^2b)^2$, $(abc)^2$, $(a^2c)^2$ SF: $2^0,2^1,2^3,2^6,2^7,2^9,2^{10},2^{11},2^{12}$

Gr: 1,7,27,65,120,204,328,

512,792,1216





Automaton number 2199

 $a = \sigma(c, a)$ Group:

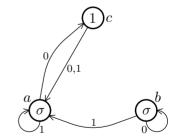
 $b = \sigma(b, a)$ Contracting: no

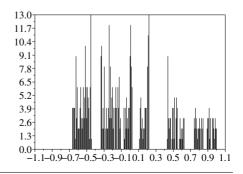
Self-replicating: yes c = (a, a)

Rels: ca^2 , $[a^{-1}b, ab^{-1}]$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,29,115,417,1505





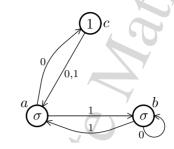
 $a = \sigma(c, b)$ Group:

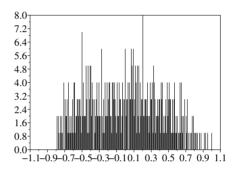
 $b = \sigma(b, a)$ Contracting: no c = (a, a)Self-replicating: yes

Rels: cab^2a

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,177,833,3909





Automaton number 2203

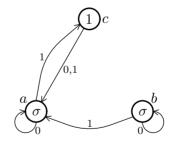
 $a = \sigma(a, c)$ Group:

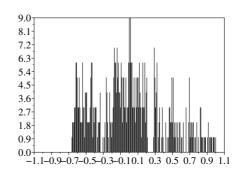
 $b = \sigma(b, a)$ Contracting: no

c = (a, a)Self-replicating: yes

Rels: ca^2 , $[c^{-2}ab, bc^{-2}a]$ SF: $2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,29,115,441,1695





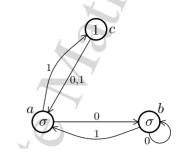
 $a = \sigma(b, c)$ Group:

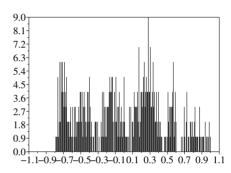
 $b = \sigma(b, a)$ Contracting: no c = (a, a)Self-replicating: yes

Rels: $bcba^2$, $[b^{-1}a, ba^{-1}]$, $a^{-1}ba^2ba^{-2}b^{-2}aba^2b^{-1}a^{-2}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,177,825,3781





Automaton number 2207

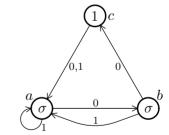
 $a = \sigma(b, a)$ Group:

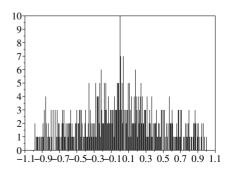
 $b = \sigma(c, a)$ Contracting: no

c = (a, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,929,4599





Automaton number 2209

 $a = \sigma(a, b)$ Group:

 $b = \sigma(c, a)$ Contracting: no

c = (a, a) Self-replicating: yes

Rels: $aca^{-2}c^{-1}acac^{-1}a^{-2}cac^{-1}$,

 $aca^{-2}b^{-1}a^{-1}cacac^{-1}a^{-2}c^{-1}abac^{-1},$

 $aca^{-1}b^{-1}a^{-1}c^2a^{-1}c^{-1}ac^{-1}abac^{-1}a^{-2}cac^{-1}$

 $aca^{-1}b^{-1}a^{-1}c^2a^{-1}b^{-1}a^{-1}cac^{-1}$.

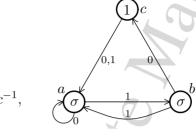
 $abac^{-1}a^{-2}c^{-1}abac^{-1}$,

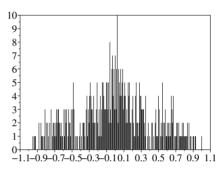
 $bca^{-1}c^{-1}ab^{-1}ca^{-1}c^{-1}aba^{-1}ca$

 $c^{-1}b^{-1}a^{-1}cac^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,937,4687





Automaton number 2210

 $a = \sigma(b, b)$ Group:

 $b = \sigma(c, a)$ Contracting: no

c = (a, a) Self-replicating: yes

 $\text{Rels: } acbc^{-1}b^{-1}a^{-1}cbc^{-1}b^{-1}abcb^{-1}c^{-1}a^{-1}bcb^{-1}c^{-1} \\$

 $bcbc^{-1}b^{-2}cbc^{-1}bcb^{-2}c^{-1},$

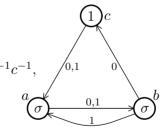
 $bcbc^{-1}b^{-2}ca^{-1}b^{-1}cabcb^{-1}c^{-1}a^{-1}c^{-1}bac^{-1},$

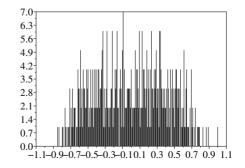
 $bca^{-1}b^{-1}cab^{-2}cbc^{-1}ba^{-1}c^{-1}bab^{-1}c^{-1},$

 $bca^{-1}b^{-1}cab^{-2}ca^{-1}b^{-1}caba^{-1}c^{-1}$.

 $bac^{-1}a^{-1}c^{-1}bac^{-1}$

SF: $2^0, 2^1, 2^3, 2^5, 2^8, 2^{13}, 2^{23}, 2^{42}, 2^{79}$





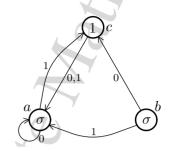
 $a = \sigma(a, c)$ Group: Klein bottle group

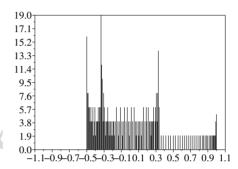
 $b = \sigma(c, a)$ Contracting: yes c = (a, a) Self-replicating: no

Rels: ca^2 , cb^2

SF: $2^0, 2^1, 2^2, 2^4, 2^6, 2^8, 2^{10}, 2^{12}, 2^{14}$

 $Gr:\ 1,7,19,37,61,91,127,169,217,271,331$





Automaton number 2213

 $a = \sigma(b, c)$ Group:

 $b = \sigma(c, a)$ Contracting: no

c = (a, a) Self-replicating: yes

Rels: $bcbc^{-1}b^{-2}cbc^{-1}bcb^{-2}c^{-1}$,

 $acbc^{-1}b^{-1}a^{-1}cbc^{-1}b^{-1}abcb^{-1}c^{-1}$

 $a^{-1}bcb^{-1}c^{-1}$

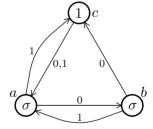
 $acbc^{-1}b^{-1}a^{-1}ba^{-1}c^{-1}b^2c^{-1}abcb^{-1}c^{-1}a^{-1}\cdot \\$

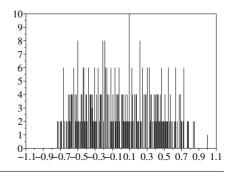
 $cb^{-2}cab^{-1}$.

 $aba^{-1}c^{-1}b^2c^{-1}a^{-1}cbc^{-1}b^{-1}$

 $acb^{-2}cab^{-1}a^{-1}bcb^{-1}c^{-1}$,

SF: 2⁰,2¹,2²,2³,2⁵,2⁸,2¹⁴,2²⁵,2⁴⁷





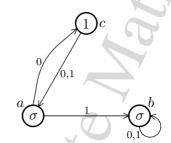
Automaton number 2229

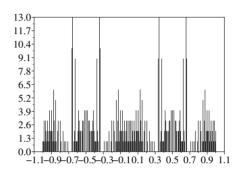
Group: $C_4 \ltimes \mathbb{Z}^2$ $a = \sigma(c, b)$

Contracting: yes $b = \sigma(b, b)$ c = (a, a)Self-replicating: no

Rels: b^2 , $(ab)^2$, $(bc)^2$, a^4 , c^4 , $[a,c]^2$, $(a^{-1}c)^4$, $(ac)^4$ SF: $2^0,2^1,2^3,2^6,2^9,2^{11},2^{13},2^{15},2^{17}$

Gr: 1,6,20,54,128,270,510,886,1452





Automaton number 2233

 $a = \sigma(a, a)$ Group:

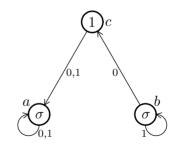
 $b = \sigma(c, b)$ Contracting: yes

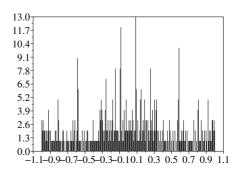
c = (a, a)Self-replicating: yes

Rels: a^2 , c^2 , abab, acac, $cb^2acbcbcab^2cabcba$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{91}$

Gr: 1,5,14,32,68,140,284,565,1106





 $a = \sigma(b, a)$ Group:

 $b = \sigma(c, b)$ Contracting: no

c = (a, a) Self-replicating: yes

Rels: $ac^{-1}a^2c^{-1}ab^{-1}a^{-1}c^{-1}a^2c^{-1}ab^{-1}ab$.

 $a^{-1}ca^{-2}ca^{-1}ba^{-1}ca^{-2}c$

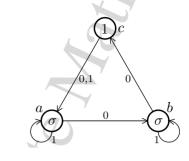
 $ac^{-1}a^{2}c^{-1}ab^{-1}a^{-1}cbac^{-1}ab^{-1}a^{-1}c^{-1}aba^{-1}\cdot \\$

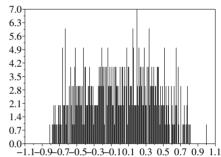
 $ca^{-1}b^{-1}aba^{-1}ca^{-2}ca^{-1}bac^{-1}ab^{-1}a^{-1}ca\cdot$

 $ba^{-1}ca^{-1}b^{-1}c^{-1}$

SF: $2^0, 2^1, 2^3, 2^6, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

 $Gr:\ 1,7,37,187,937,4687$





Automaton number 2236

 $a = \sigma(a, b)$ Group:

 $b = \sigma(c, b)$ Contracting: no

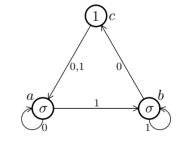
c = (a, a) Self-replicating: yes

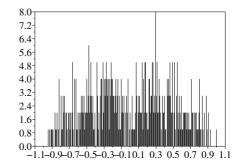
Rels: $[b^{-1}a, ba^{-1}], a^{-1}c^{-1}acb^{-1}ac^{-1}a^{-1}cb,$

 $a^{-1}cac^{-1}b^{-1}aca^{-1}c^{-1}b$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,929,4579



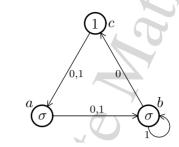


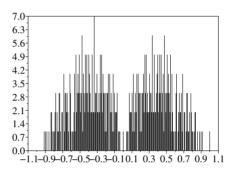
 $a = \sigma(b, b)$ Group:

 $b = \sigma(c, b)$ Contracting: no c = (a, a)Self-replicating: no

Rels: $[b^{-1}a, ba^{-1}]$, $[c^{-1}a, ca^{-1}]$ SF: $2^0, 2^1, 2^3, 2^6, 2^9, 2^{15}, 2^{26}, 2^{45}, 2^{81}$

Gr: 1,7,37,187,921,4511





Automaton number 2239

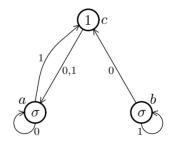
 $a = \sigma(a, c)$ Group:

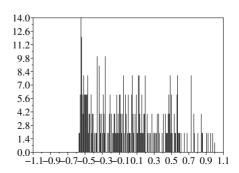
 $b = \sigma(c, b)$ Contracting: no

c = (a, a)Self-replicating: yes

Rels: ca^2 , $[ca^{-2}cba^{-1}, a^{-1}ca^{-2}cb]$ SF: $2^0, 2^1, 2^2, 2^3, 2^5, 2^8, 2^{14}, 2^{25}, 2^{47}$

Gr: 1,7,29,115,441,1695





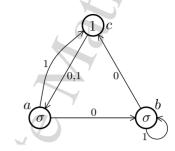
 $a = \sigma(b, c)$ Group: F_3

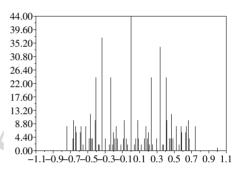
 $b = \sigma(c, b)$ Contracting: no c = (a, a)Self-replicating: no

Rels:

SF: $2^0, 2^1, 2^2, 2^4, 2^7, 2^{10}, 2^{14}, 2^{21}, 2^{34}$

Gr: 1,7,37,187,937,4687





Automaton number 2261

 $a = \sigma(b, a)$ Group:

 $b = \sigma(c, c)$ Contracting: no

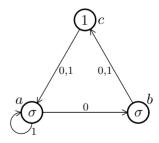
c = (a, a) Self-replicating: yes

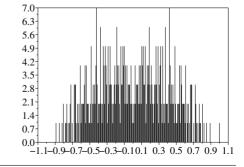
Rels: $acac^{-1}a^{-2}cac^{-1}aca^{-2}c^{-1}$,

 $acac^{-1}a^{-2}cba^{-1}c^{-1}aca^{-1}cb^{-1}aca^{-1}c^{-1}\cdot$

 $bc^{-1}ac^{-1}a^{-1}cab^{-1}c^{-1}$,

 $\begin{array}{l} bcac^{-1}a^{-1}b^{-1}cac^{-1}a^{-1}baca^{-1}c^{-1}b^{-1}aca^{-1}c^{-1}\\ \text{SF: } 2^{0},2^{1},2^{2},2^{4},2^{6},2^{9},2^{15},2^{26},2^{48} \end{array}$





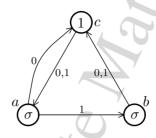
Automaton number 2265

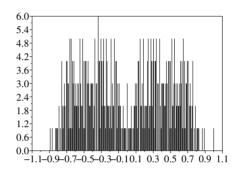
 $a = \sigma(c, b)$ Group:

 $b = \sigma(c, c)$ Contracting: no c = (a, a)Self-replicating: no

 $\begin{array}{l} \text{Rels: } [b^{-1}a,ba^{-1}], \ a^{-1}ca^{-1}cb^{-1}ac^{-1}ac^{-1}b, \\ a^{-1}cb^{-1}cb^{-1}ac^{-1}bc^{-1}b \end{array}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{14}, 2^{22}, 2^{36}, 2^{63}$ Gr: 1,7,37,187,929,4579,22521





Automaton number 2271

 $a = \sigma(c, a)$ Group:

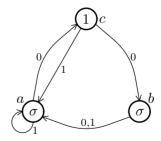
 $b = \sigma(a, a)$ Contracting: no

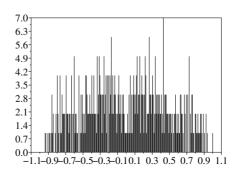
c = (b, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}], a^{-1}c^2a^{-1}b^{-1}a$ $a^{-1}c^2b^{-2}abc^{-2}b$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,929,4583





 $a = \sigma(c, b)$ Group:

 $b = \sigma(a, a)$ Contracting: no

c = (b, a) Self-replicating: yes

Rels: $ac^3b^{-1}c^{-2}b^3c^{-3}a^{-1}c^3b^{-1}c^{-2}b^3c^{-3}ac^3b^{-3}$.

 $c^2bc^{-3}a^{-1}c^3b^{-3}c^2bc^{-3}$

 $ac^{3}b^{-1}c^{-2}b^{3}c^{-3}a^{-1}c^{2}ab^{-2}c^{-1}b^{3}c^{-3}ac^{3}b^{-3}$.

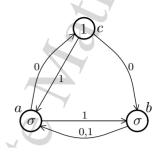
 $c^2bc^{-3}a^{-1}c^3b^{-3}cb^2a^{-1}c^{-2}$.

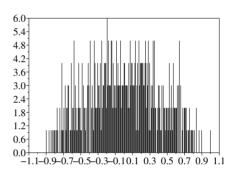
 $bc^3b^{-1}c^{-2}b^3c^{-3}b^{-1}c^3b^{-1}c^{-2}b^3c^{-3}$.

 $bc^3b^{-3}c^2bc^{-3}b^{-1}c^3b^{-3}c^2bc^{-3}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,937,4687





Automaton number 2277

 $a = \sigma(c, c)$ Group: $C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$

 $b = \sigma(a, a)$ Contracting: yes

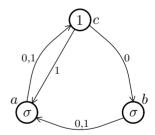
c = (b, a) Self-replicating: yes

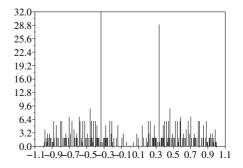
Rels: a^2 , b^2 , c^2 , $(acb)^2$

SF: 2⁰,2¹,2²,2⁴,2⁵,2⁶,2⁷,2⁸,2⁹

Gr: 1,4,10,19,31,46,64,85,109,136,166

Limit space: 2-dimensional sphere S_2





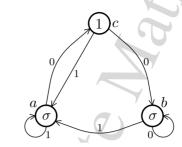
Automaton number 2280

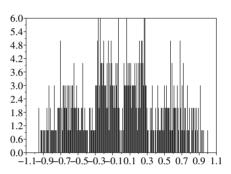
 $a = \sigma(c, a)$ Group:

 $b = \sigma(b, a)$ Contracting: no Self-replicating: yes c = (b, a)Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[a,b]^2$, $[b,c]^2$,

 $\stackrel{\smile}{\mathrm{SF}}:\stackrel{\smile}{2^0},2^1,2^3,2^7,2^{13},2^{25},2^{47},2^{90},2^{176}$

Gr: 1,7,33,143,597,2465





Automaton number 2283

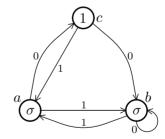
 $a = \sigma(c, b)$ Group:

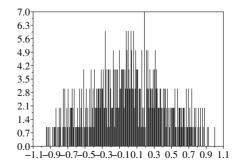
 $b = \sigma(b, a)$ Contracting: no

Self-replicating: yes c = (b, a)

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[b, c]^2$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,33,143,604,2534





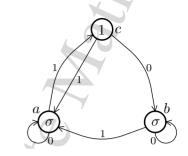
 $a = \sigma(a, c)$ Group:

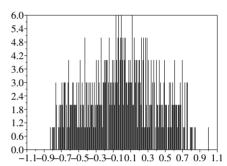
 $b = \sigma(b, a)$ Contracting: no c = (b, a) Self-replicating: yes Rels: $(b^{-1}c)^2$, $(a^{-1}b)^4$, $(bc^{-2}a)^2$,

Rels: $(b^{-1}c)^2$, $(a^{-1}b)^3$, $(b^{-1}c)^4$

SF: 2⁰,2¹,2³,2⁷,2¹³,2²⁵,2⁴⁷,2⁹⁰,2¹⁷⁶

Gr: 1,7,35,165,758,3460





Automaton number 2285

 $a = \sigma(b, c)$ Group:

 $b = \sigma(b, a)$ Contracting: no

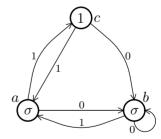
c = (b, a) Self-replicating: yes

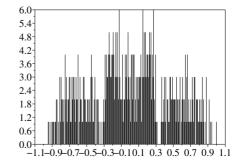
Rels: $(b^{-1}c)^2$, $[b^{-1}a, ba^{-1}]$, $[(c^{-1}a)^2, c^{-1}b]$,

 $[(ca^{-1})^2, cb^{-1}]$

 $\dot{\mathrm{SF}} \colon 2^{0'}\!,\!2^{1'}\!,\!2^{3},\!2^{1\!\!7},\!2^{13},\!2^{25},\!2^{47},\!2^{90},\!2^{176}$

Gr: 1,7,35,165,761,3479





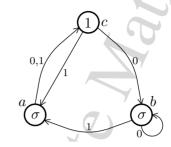
Automaton number 2286

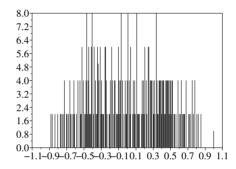
 $a = \sigma(c, c)$ Group:

 $b = \sigma(b, a)$ Contracting: no c = (b, a)Self-replicating: yes

Rels: $(b^{-1}c)^2$, $[a, bc^{-1}]$ SF: $2^0, 2^1, 2^2, 2^3, 2^5, 2^9, 2^{15}, 2^{27}, 2^{49}$

Gr: 1,7,35,159,705,3107





Automaton number 2287

 $a = \sigma(a, a)$ Group: $IMG\left(\frac{z^2+2}{1-z^2}\right)$

 $b = \sigma(c, a)$ Contracting: yes

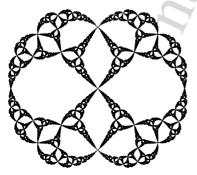
c = (b, a)Self-replicating: yes

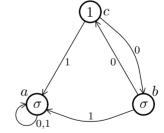
Rels: a^2 , $[a, b^2]$, $(b^{-1}ac)^2$, $[ba, c^2]$ $[c^2, aca]$

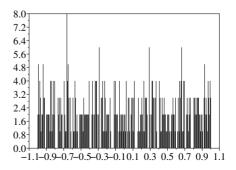
SF: 2⁰,2¹,2³,2⁷,2¹³,2²⁴,2⁴⁶,2⁸⁹,2¹⁷⁵

Gr: 1,6,26,100,362,1246

Limit space:







 $a = \sigma(a, c)$ Group:

 $b = \sigma(c, a)$ Contracting: no

c = (b, a) Self-replicating: yes

Rels:

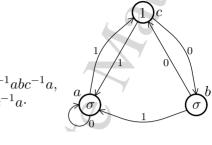
 $cb^{-1}a^{-1}ca^{-1}cb^{-1}a^{-1}cac^{-1}abc^{-1}a^{-1}c^{-1}abc^{-1}a,\\ cb^{-1}a^{-1}c^2a^{-1}c^2b^{-1}a^{-1}c^2b^{-1}a^{-1}ca^{-2}c^{-1}a\cdot$

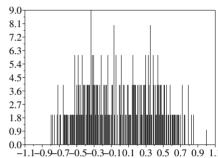
 $b^2c^{-2}ab^{-1}a^{-1}ca^2c^{-1}abc^{-2}abc^{-2}ac^{-1}$.

 $ba^{-1}cb^{-1}a^{-1}cab^{-1}a^{-1}cb^{-1}a^{-1}c$

 $aba^{-1}c^{-1}abc^{-1}ab^{-1}a^{-1}c^{-1}abc^{-1}a$ SF: $2^{0},2^{1},2^{2},2^{4},2^{8},2^{13},2^{23},2^{41},2^{76}$

Gr: 1,7,37,187,937,4687





Automaton number 2294

 $a = \sigma(b, c)$ Group: BS(1, -3)

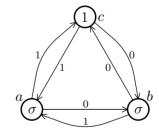
 $b = \sigma(c, a)$ Contracting: no

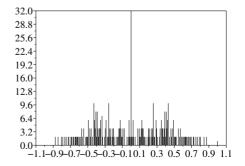
c = (b, a) Self-replicating: yes

Rels: $b^{-1}ca^{-1}c$, $(ca^{-1})^a(ca^{-1})^3$

SF: 2⁰,2¹,2²,2⁴,2⁶,2⁸,2¹⁰,2¹²,2¹⁴

Gr: 1,7,33,127,433,1415





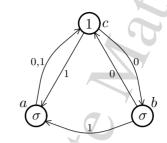
Automaton number 2295

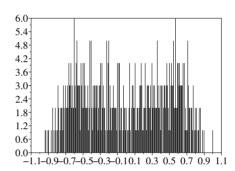
 $a = \sigma(c, c)$ Group:

 $b = \sigma(c, a)$ Contracting: no c = (b, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,929,4599





Automaton number 2307

 $a = \sigma(c, a)$ Group:

 $b = \sigma(b, b)$ Contracting: no

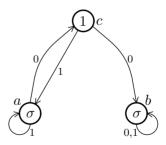
c = (b, a)Self-replicating: yes

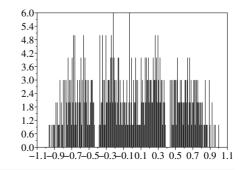
Rels: b^2 , $a^{-2}c^{-1}bca^2c^{-1}bc$, $a^{-1}c^{-1}bc^{-2}bcac^2$,

 $a^{-1}cbc^{-2}bc^{-1}ac^{2}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,6,26,106,426,1681



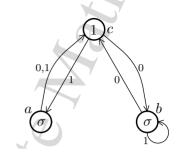


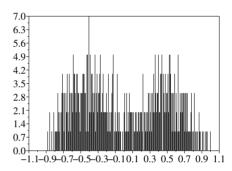
 $a = \sigma(c, c)$ Group:

 $b = \sigma(c, b)$ Contracting: no c = (b, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,929,4599





Automaton number 2355

 $a = \sigma(c, b)$ Group:

 $b = \sigma(a, a)$ Contracting: no

c = (c, a)Self-replicating: yes

Rels:

 $bca^{-2}c^{-1}bcac^{-1}b^{-2}cac^{-1}$

 $aca^{-1}c^{-1}ba^{-1}ca^{-1}c^{-1}bab^{-1}cac^{-1}a^{-1}b^{-1}cac^{-1}$,

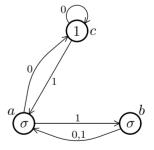
 $abac^{-1}bc^{-1}b^{-1}a^{-1}ca^{-1}c^{-1}bab$

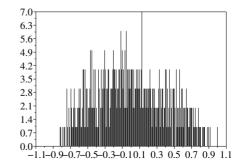
 $cb^{-1}ca^{-1}b^{-1}a^{-1}b^{-1}cac^{-1}$.

 $aca^{-1}c^{-1}ba^{-1}bac^{-1}bc^{-1}b^{-1}a$.

 $b^{-1}cac^{-1}a^{-1}bcb^{-1}ca^{-1}b^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$



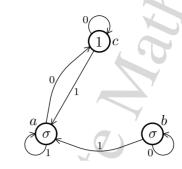


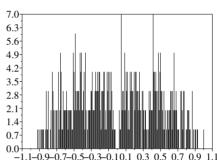
Group: $a = \sigma(c, a)$

98

 $b = \sigma(b, a)$ Contracting: n/ac = (c, a)Self-replicating: yes $\begin{array}{l} \text{Rels: } (a^{-1}c)^2, \, [b^{-1}a, ba^{-1}], \, [a,c]^2, \\ (b^{-1}a^{-1}c^2)^2, \, [ac^{-1}, bc^{-1}ba^{-1}] \\ \text{SF: } 2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176} \end{array}$

Gr: 1,7,35,165,749,3343





Automaton number 2364

 $a = \sigma(c, b)$ Group:

 $b = \sigma(b, a)$ Contracting: no

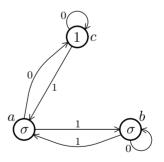
c = (c, a)Self-replicating: yes

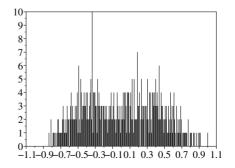
Rels:

 $aca^{-1}cb^{-1}a^{-1}ca^{-1}cb^{-1}abc^{-1}ac^{-1}a^{-1}bc^{-1}ac^{-1},$ $bca^{-1}cb^{-2}ca^{-2}ca^{-1}b^3c^{-1}ac^{-1}b^{-2}ac^{-1}a^2c^{-1}$ $bca^{-2}ca^{-1}ca^{-2}ca^{-1}bac^{-1}a^2c^{-1}b^{-2}ac^{-1}a^2c^{-1}$ $bca^{-2}ca^{-1}ca^{-1}cb^{-1}ac^{-1}a^2c^{-2}ac^{-1}$.

 $bca^{-1}cb^{-2}ca^{-1}cbc^{-1}ac^{-2}ac^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$



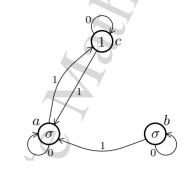


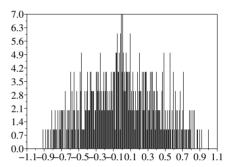
 $a = \sigma(a, c)$ Group:

 $b = \sigma(b, a)$ Contracting: n/ac = (c, a)Self-replicating: yes

Rels: $(a^{-1}b)^2$, $(a^{-1}c)^2$, $[a, c]^2$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$

Gr: 1,7,33,143,604,2534





Automaton number 2366

 $a = \sigma(b, c)$ Group:

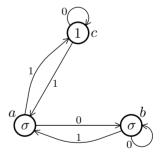
 $b = \sigma(b, a)$ Contracting: no

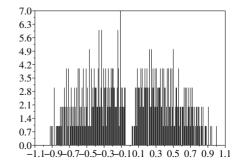
c = (c, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$, $a^{-1}c^{-1}acb^{-1}ac^{-1}a^{-1}cb$, $a^{-1}cbc^{-1}b^{-1}acb^{-1}c^{-1}b$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,37,187,929,4579





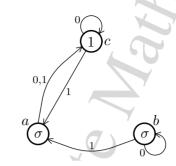
 $a = \sigma(c, c)$ Group:

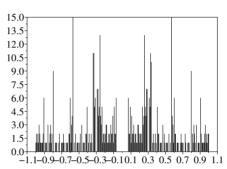
 $b = \sigma(b, a)$ Contracting: yes Self-replicating: yes c = (c, a)

Rels: a^2 , c^2 , $b^{-2}cacb^2cac$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}, 2^{90}$

Gr: 1,5,17,53,161,480,1422





Automaton number 2369

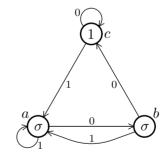
 $a = \sigma(b, a)$ Group:

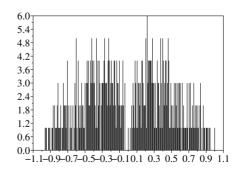
 $b = \sigma(c, a)$ Contracting: no

Self-replicating: yes c = (c, a)

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[a,b]^2$, $(a^{-1}c)^4$ SF: $2^0,2^1,2^3,2^7,2^{13},2^{25},2^{47},2^{90},2^{176}$

Gr: 1,7,33,143,602,2514





 $a = \sigma(a, b)$ Group:

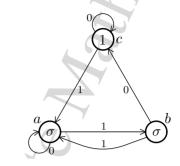
 $b = \sigma(c, a)$ Contracting: no

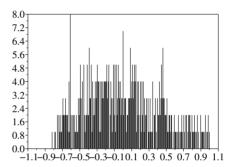
c = (c, a)Self-replicating: yes Rels: $(b^{-1}c)^2$, $(a^{-1}b)^4$, $(b^{-1}c^{-1}ac)^2$,

 $(a^{-1}c)^4$

 ${\rm \grave{S}F}\colon 2^{\acute{0}},\!2^{1},\!2^{3},\!2^{7},\!2^{13},\!2^{25},\!2^{47},\!2^{90},\!2^{176}$

Gr: 1,7,35,165,758,3460





Automaton number 2372

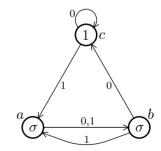
 $a = \sigma(b, b)$ Group:

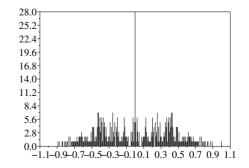
 $b = \sigma(c, a)$ Contracting: no

c = (c, a)Self-replicating: yes

Rels: $(a^{-1}b)^2$, $(b^{-1}c)^2$, $[c, ab^{-1}]$, $[cb^{-1}, a]$, $[c^{-1}, b^{-1}] \cdot [a^{-1}, b^{-1}]$, $[a, c^{-1}] \cdot [b, a^{-1}]$, $[b^{-1}, a^{-1}] \cdot [c^{-1}, a^{-1}]$ SF: $2^0, 2^1, 2^3, 2^5, 2^7, 2^9, 2^{11}, 2^{13}, 2^{15}$

Gr: 1,7,33,127,433,1415





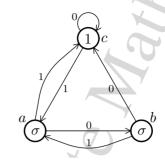
 $a = \sigma(b, c)$ Group:

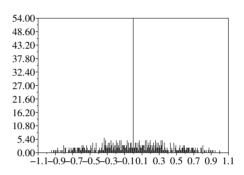
 $b = \sigma(c, a)$ Contracting: no c = (c, a)Self-replicating: yes

Rels: $(b^{-1}c)^2$

SF: 2^{0} , 2^{1} , 2^{3} , 2^{5} , 2^{9} , 2^{15} , 2^{26} , 2^{48} , 2^{92}

Gr: 1,7,35,165,769,3575





Automaton number 2391

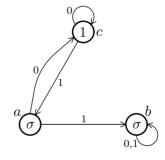
 $a = \sigma(c, b)$ Group:

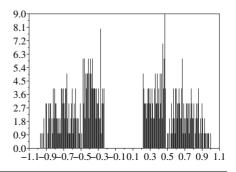
 $b = \sigma(b, b)$ Contracting: no

c = (c, a)Self-replicating: yes

Rels: b^2 , $[a^2, b]$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,6,26,103,399,1538





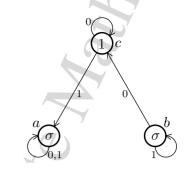
 $a = \sigma(a, a)$ Group:

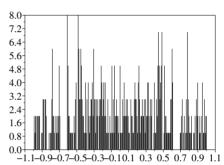
 $b = \sigma(c, b)$ Contracting: no

c = (c, a) Self-replicating: yes

Rels: a^2 , c^2 , $(acb)^2$, $[b^2, cac]$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,5,17,50,140,377,995,2605





Automaton number 2396

 $a = \sigma(b, a)$ Group: A. Boltenkov group

 $b = \sigma(c, b)$ Contracting: no

c = (c, a) Self-replicating: yes

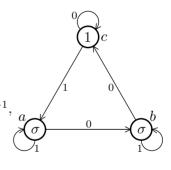
Rels: $acb^{-1}ca^{-2}cb^{-1}cac^{-1}bc^{-2}bc^{-1}$,

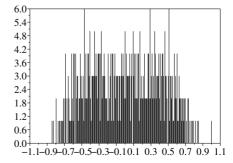
 $acb^{-1}ca^{-2}cb^{-1}a^2c^{-1}b^{-1}a^2c^{-1}bc^{-1}a^{-1}bca^{-2}bc^{-1}$

 $acb^{-1}a^2c^{-1}b^{-1}a^{-1}cb^{-1}cbca^{-2}bc^{-2}bc^{-1}$

 $bcb^{-1}ca^{-1}b^{-1}cb^{-1}a^2c^{-1}ac^{-1}ba^{-2}bc^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$





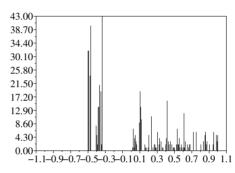
Group: F.Dahmani Group $a = \sigma(a, b)$

 $b = \sigma(c, b)$ Contracting: no c = (c, a)Self-replicating: yes Rels: cba, $b^{-1}a^{-1}b^2a^{-1}b^{-1}a^2$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

Gr: 1,7,31,127,483,1823





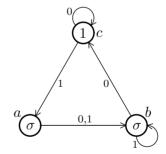
Automaton number 2399

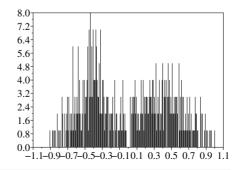
 $a = \sigma(b, b)$ Group:

 $b = \sigma(c, b)$ Contracting: no c = (c, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

Gr: 1,7,37,187,929,4599



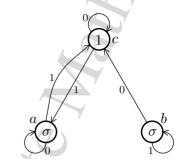


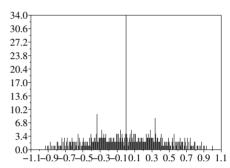
 $a = \sigma(a, c)$ Group:

 $b = \sigma(c, b)$ Contracting: no c = (c, a) Self-replicating: yes

Rels: $(a^{-1}c)^2$, $[a, c]^2$, $(c^{-2}ba)^2$ SF: $2^0, 2^1, 2^3, 2^5, 2^9, 2^{15}, 2^{26}, 2^{48}, 2^{92}$

Gr: 1,7,35,165,757,3447





Automaton number 2402

 $a = \sigma(b, c)$ Group:

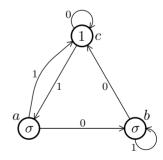
 $b = \sigma(c, b)$ Contracting: n/a

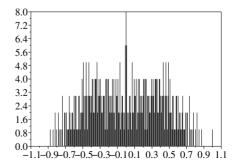
c = (c, a) Self-replicating: yes

Rels: $ac^2b^{-1}a^{-2}c^2b^{-1}abc^{-2}bc^{-2}$, $ac^2b^{-1}a^{-2}cb^{-2}c^{-1}a^4bc^{-2}a^{-3}cb^2c^{-1}$,

 $acb^{-2}c^{-1}ac^{2}b^{-1}a^{-2}cb^{2}c^{-1}bc^{-2},$

 $acb^{-2}c^{-1}acb^{-2}c^{-1}acb^{2}c^{-1}a^{-3}cb^{2}c^{-1}$ SF: $2^{0},2^{1},2^{3},2^{5},2^{7},2^{10},2^{15},2^{25},2^{41}$





Automaton number 2423

 $a = \sigma(b, a)$ Group:

 $b = \sigma(c, c)$ Contracting: no

c = (c, a)Self-replicating: yes

Rels: $ac^{-1}bca^{-2}c^{-1}bcac^{-1}b^{-2}c$,

 $ac^{-1}bca^{-1}c^{-1}bac^{-1}b^{-1}a^{2}c^{-1}b^{-1}ca^{-1}b$.

 $ca^{-1}b^{-1}ca^{-1}$

 $bc^{-1}bca^{-1}b^{-1}ac^{-1}bac^{-1}ac^{-1}b^{-1}c^2a^{-1}\cdot$

 $b^{-1}ca^{-1}$.

 $bac^{-1}bac^{-1}b^{-2}c^{-1}bca^{-1}b^2ca^{-1}$.

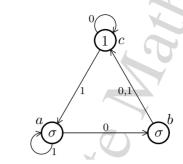
 $b^{-1}ca^{-1}b^{-1}ac^{-1}b^{-1}c$

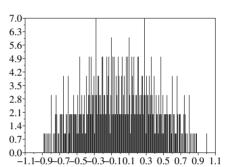
 $bac^{-1}bac^{-1}b^{-2}ac^{-1}bac^{-1}bca^{-1}\cdot$

 $b^{-1}ca^{-1}ca^{-1}b^{-1}ca^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}, 2^{90}$

Gr: 1,7,37,187,937,4687





Automaton number 2427

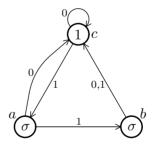
 $a = \sigma(c, b)$ Group:

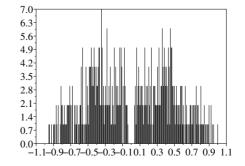
 $b = \sigma(c, c)$ Contracting: n/a

c = (c, a)Self-replicating: yes

Rels: $[b^{-1}a, ba^{-1}]$, $a^{-1}c^2a^{-1}b^{-1}a^2c^{-2}b$ SF: $2^0, 2^1, 2^3, 2^7, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$

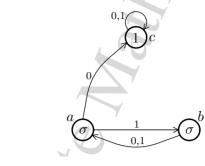
Gr: 1,7,37,187,929,4583

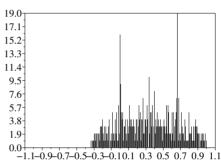




 $\begin{array}{ll} a = \sigma(c,b) & \text{Group:} \\ b = \sigma(a,a) & \text{Contracting: } no \\ c = (c,c) & \text{Self-replicating: } yes \\ \text{Rels: } c, \, a^{-1}b^{-1}a^{-2}ba^{-1}b^{-1}aba^2b^{-1}ab, \\ a^{-1}b^{-1}a^{-2}b^{-1}a^{-1}babab^{-2}abab, \\ a^{-1}ba^{-1}b^{-2}a^{-1}ba^{-1}bab^{-1}a^2b^{-1}ab \\ \text{SF: } 2^0, 2^1, 2^3, 2^5, 2^8, 2^{13}, 2^{23}, 2^{42}, 2^{79} \end{array}$

Gr: 1,5,17,53,161,485, 1457,4359,12991





Automaton number 2850

 $a = \sigma(c, b)$ Group:

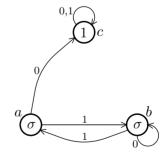
 $b = \sigma(b, a)$ Contracting: no

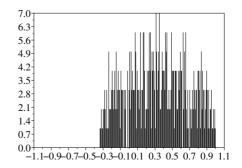
c = (c, c) Self-replicating: yes

Rels: $c, a^{-4}bab^{-1}a^2b^{-1}ab$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$

 $Gr:\ 1,5,17,53,161,485,1445$



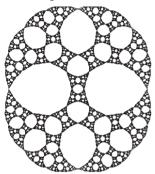


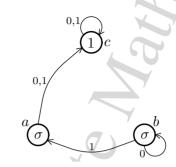
 $a = \sigma(c, c)$ Group: $IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$ $b = \sigma(b, a)$ Contracting: yesc = (c, c) Self-replicating: yes

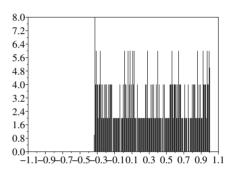
Rels: c, a^2 , $ab^{-1}ab^{-2}ab^{-1}abab^2ab$ SF: $2^0,2^1,2^2,2^3,2^5,2^8,2^{14},2^{25},2^{47}$ Gr: 1,4,10,22,46,94,190,375,731,

1422,2752,5246,9908

Limit space:







9. Proofs

This section contains proofs of many of the claims contained in the tables in Section 7 and Section 8 and some additional information.

We sometimes encounter one of the following four binary tree automorphisms

$$a = \sigma(1, a),$$
 $b = \sigma(b, 1),$ $c = \sigma(c^{-1}, 1),$ $d = \sigma(1, d^{-1}).$

The first one is the binary adding machine, the second is its inverse, and all are conjugate to the adding machine and therefore act level transitively on the binary tree and have infinite order.

We freely use the known classification of groups generated by 2-state automata over a 2-letter alphabet.

Theorem 7 ([GNS00]). Up to isomorphism, there are six (2,2)-automaton groups: the trivial group, the cyclic group of order 2 (we denote it by C_2), Klein group $C_2 \times C_2$ of order 4, the infinite cyclic group \mathbb{Z} , the infinite dihedral group D_{∞} and the Lamplighter group $\mathbb{Z} \wr C_2$.

In particular the sixteen 2-state automata for which both states are inactive generate the trivial group, and the sixteen 2-state automata in which both states are active generate C_2 (since both states in that case describe the mirror automorphism $\mu = \sigma(\mu, \mu)$ of order 2.

The automata given by either of the wreath recursions

$$a = \sigma(a, a),$$
 $b = (a, a),$
 $a = \sigma(b, b),$ $b = (a, a),$

generate the Klein group $C_2 \times C_2$.

The automata given by the wreath recursions

$$a = \sigma(a, a),$$
 $b = (a, b),$
 $a = \sigma(a, a),$ $b = (b, a),$
 $a = \sigma(b, b),$ $b = (a, b),$
 $a = \sigma(b, b),$ $b = (b, a),$

generate the infinite dihedral group D_{∞} .

The automata given by the wreath recursions

$$a = \sigma(a, a),$$
 $b = (b, b),$
 $a = \sigma(b, b),$ $b = (b, b),$

generate the cyclic group C_2 .

The automata given by the wreath recursions

$$a = \sigma(a, b),$$
 $b = (a, a),$
 $a = \sigma(b, a),$ $b = (a, a),$
 $a = \sigma(a, b),$ $b = (b, b),$
 $a = \sigma(b, a),$ $b = (b, a),$

generate the infinite cyclic group \mathbb{Z} . Moreover, in the first two cases we have $b=a^{-2}$, in the fourth case b=1 and a is the adding machine, and in the third case b=1 and a is the inverse of the adding machine.

The automata given by the wreath recursions

$$a = \sigma(a, b),$$
 $b = (a, b),$
 $a = \sigma(a, b),$ $b = (b, a),$
 $a = \sigma(b, a),$ $b = (a, b),$
 $a = \sigma(b, a),$ $b = (b, a),$

generate the Lamplighter group $\mathbb{Z} \wr C_2 = \mathbb{Z} \ltimes (\oplus_{\mathbb{Z}} C_2)$.

The results on the next few pages concern the existence of elements of infinite order and the level transitivity of the action. They are used in some of the proofs that follow.

Lemma 1 ([BGK⁺a]). Let G be a group generated by an automaton \mathcal{A} over a 2-letter alphabet. Assume that the set of states S of \mathcal{A} splits into two nonempty parts P and Q such that

- (i) one of the parts consists of the active states (those with nontrivial vertex permutation) and the other consists of the inactive states;
- (ii) for each state from P, both arrows go to states in the same part (either both to P or both to Q);
- (iii) for each state from Q, one arrow goes to a state in P and the other to a state in Q.

Then any element of the group that can be written as a product of odd number of active generators or their inverses and odd number of inactive generators and their inverses, in any order, has infinite order. In particular, the group G is not a torsion group.

Proof. Denote by D the set of elements in G that can be represented as a product of odd number of active generators or their inverses and odd number of inactive generators and their inverses, in any order.

We note that if $g \in D$ then both sections of g^2 are in D. Indeed, for such an element, $g = \sigma(g_0, g_1)$ and $g^2 = (g_1g_0, g_0g_1)$. Both sections of g^2 are products (in some order) of the first level sections of the generators (and/or their inverses) used to express q as an element in D. By assumption, among these generators, there are odd number of active and odd number of inactive ones. The generators from P, by condition (ii), produce even number of active and even number of inactive sections on level 1, while the generators from Q, by condition (iii), produce odd number of active sections and odd number of inactive sections. Thus both sections of q are in D.

By way of contradiction, assume that h is an element of D of finite order 2^n , for some $n \geq 0$. If n > 0 the sections of h^2 are elements in D of order 2^{n-1} . Thus, continuing in this fashion, we reach an element in D that is trivial. This is contradiction since all elements in D act nontrivially on level 1.

There is a simple criterion that determines whether a given element of a self-similar group generated by a finite automaton over the 2-letter alphabet $X = \{0,1\}$ acts level transitively on the tree. The criterion is based on the image of the given element in the abelianization of $Aut(X^*)$, which is isomorphic to the infinite Cartesian product $\prod_{i=0}^{\infty} C_2$. canonical isomorphism sends $g \in G$ to $(a_i \mod 2)_{i=0}^{\infty}$, where a_i is the number of active sections of g at level i. We also make use of the ring structure on $\prod_{i=0}^{\infty} C_2$ obtained by identifying $(b_i)_{i=0}^{\infty}$ with $\sum_{i=0}^{\infty} b_i t^i$ in the ring of formal power series $C_2[[t]]$. It is known that a binary tree automorphism g acts level transitively on X^* if and only if $\bar{g} = (1, 1, 1, ...)$, where \bar{g} be the image of g in the abelianization $\prod_{i=0}^{\infty} C_2$ of Aut (X^*) .

Lemma 2 (Element transitivity, [BGK⁺a]). Let G be a group generated by an automaton A over a 2-letter alphabet. There exists an algorithm that decides if g acts level transitively on X^* .

Proof. Let $g = \sigma^i(g_0, g_1)$, where $i \in \{0, 1\}$. Then $\overline{g} = i + t \cdot (\overline{g_0} + \overline{g_1}).$

$$\overline{g} = i + t \cdot (\overline{g_0} + \overline{g_1}).$$

Similar equations hold for all sections of q. Since G is generated by a finite automaton, g has only finitely many different sections, say k. Therefore we obtain a linear system of k equations over the k variables $\{g_v, v \in X^*\}$. The solution of this system expresses \bar{q} as a rational function P(t)/Q(t), where P an Q are polynomials of degree not higher than k. The element g acts level transitively if and only if $\bar{g} = \frac{1}{1-t}$.

We often need to show that a given group of tree automorphisms is level transitive. Here is a very convenient necessary and sufficient condition for this in the case of a binary tree.

Lemma 3 (Group transitivity, [BGK⁺a]). A self-similar group of binary tree automorphisms is level transitive if and only if it is infinite.

Proof. Let G be a self-similar group acting on a binary tree.

If G acts level transitively then G must be infinite (since the size of the levels is not bounded).

Assume now that the group G is infinite.

We first prove that all level stabilizers $\operatorname{Stab}_{G}(n)$ are different. Note that, since all level stabilizers have finite index in G and G is infinite, all level stabilizers are infinite. In particular, each contains a nontrivial element.

Let n > 0 and $g \in \operatorname{Stab}_G(n-1)$ be an arbitrary nontrivial element. Let $v = x_1 \dots x_k$ be a word of shortest length such that $g(v) \neq v$. Since $g \in \operatorname{Stab}_G(n-1)$, we must have $k \geq n$. The section $h = g_{x_1x_2...x_{k-n}}$ is an element of G by the self-similarity of G. The minimality of the word v implies that $g \in \operatorname{Stab}_G(k-1)$, and therefore $h \in \operatorname{Stab}_G(n-1)$. On the other hand h acts nontrivially on $x_{k-n+1} \dots x_k$ and we conclude that $h \in \operatorname{Stab}_G(n-1) \setminus \operatorname{Stab}_G(n)$. Thus all level stabilizers are different.

We now prove level transitivity by induction on the level.

The existence of elements in $\operatorname{Stab}_G(0) \setminus \operatorname{Stab}_G(1)$ shows that G acts transitively on level 1.

Assume that G acts transitively on level n. Select an arbitrary element $h \in \operatorname{Stab}_G(n) \setminus \operatorname{Stab}_G(n+1)$ and let $w = \in X^n$ be a word of length n such that h(w1) = w0.

Let u be an arbitrary word of length n and let x be a letter in $X = \{0,1\}$. We will prove that ux is mapped to w0 by some element of G, proving the transitivity of the action at level n+1. By the inductive assumption there exists $f \in G$ such that f(u) = w. If f(ux) = w0 we are done. Otherwise, hf(ux) = h(w1) = w0 and we are done again. \square

Consider the infinitely iterated permutational wreath product $\lambda_{i\geq 1}C_d$, consisting of the automorphisms of the d-ary tree for which the activity at every vertex is a power of some fixed cycle of length d. The last proof works, mutatis mutandis, for the self-similar subgroups of $\lambda_{i\geq 1}C_d$ and may be easily adapted in other situations.

The following lemma is used often when we want to prove that some automaton group is not free.

Lemma 4. If a self-similar group contains two nontrivial elements of the form (1, u), (v, 1), then the group is not free.

Proof. Suppose a=(1,u), b=(v,1) are two nontrivial elements of a self-similar group G and G is free. Obviously [a,b]=1, hence a and b are powers of some element $x \in G$: $a=x^m, b=x^n$. Then $a^n=b^m$, so $a^n=(1,u^n)=b^m=(v^m,1)$. This implies that $u^n=v^m=1$, which is a contradiction, since u and v are nontrivial elements of a free group. \square

In most case when the corresponding group is finite we do not offer a full proof. In all such cases the proof can be easily done by direct calculations. As an example, a detailed proof is given in the case of the automaton [748].

We now proceeds to individual analysis of the properties of the automaton groups in our classification.

1. Trivial group.

730. Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(a, a), b = (a, a), c = (a, a)$.

The claim follows from the relations b = c, $a^2 = b^2 = abab = 1$.

731 $\cong \mathbb{Z}$. Wreath recursion: $a = \sigma(b, a), b = (a, a), c = (a, a)$.

We have c = b and $b = a^{-2}$. The states a and b form a 2-state automaton generating \mathbb{Z} (see Theorem 7).

734 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(b, b)$, b = (a, a), c = (a, a).

The claim follows from the relations b = c, $a^2 = b^2 = abab = 1$.

739 $\cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(a, a), b = (b, a), c = (a, a)$.

All generators have order 2. The elements u = acba = (1, ba) and v = bc = (ba, 1) generate \mathbb{Z}^2 . This is clear since $ba = \sigma(1, ba)$ is the adding machine and therefore has infinite order. Further, we have $ac = \sigma$ and $\langle u, v \rangle$ is normal in $H = \langle u, v, \sigma \rangle$, since $u^{\sigma} = v$ and $v^{\sigma} = u$. Thus $H \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z}) = C_2 \wr \mathbb{Z}$.

We have $G_{739} = \langle H, a \rangle$ and H is normal in G_{739} , since it has index 2. Moreover, $u^a = v^{-1}$, $v^a = u^{-1}$ and $\sigma^a = \sigma$. Thus $G_{739} = C_2 \ltimes (C_2 \wr \mathbb{Z})$, where the action of C_2 on H is specified above.

740. Wreath recursion: $a = \sigma(b, a), b = (b, a), c = (a, a)$.

The states a, b form a 2-state automaton generating the Lamplighter group (see Theorem 7). Thus G_{740} has exponential growth and is neither torsion nor contracting.

Since c = (a, a) we obtain that G_{740} can be embedded into the wreath product $C_2 \wr (\mathbb{Z} \wr \mathbb{C}_2)$. Thus G_{740} is solvable.

741. Wreath recursion: $a = \sigma(c, a), b = (b, a), c = (a, a).$

The states a and c form a 2-state automaton generating the infinite cyclic group \mathbb{Z} in which $c = a^{-2}$ (see Theorem 7).

Since b = (b, a), we see that b has infinite order and that G_{741} is not contracting).

We have $c = a^{-2}$ and $b^{-1}a^{-3}b^{-1}ababa = 1$. Since a and b do not commute the group is not free.

743 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(b, b), b = (b, a), c = (a, a)$.

All generators have order 2. The elements u = acba = (1, ba) and v = bc = (ba, 1) generate \mathbb{Z}^2 because $ba = \sigma(ab, 1)$ is conjugate to the adding machine and has infinite order. Further, we have $babc = \sigma$ and $\langle u, v \rangle$ is normal in $H = \langle u, v, \sigma \rangle$ because $u^{\sigma} = v$ and $v^{\sigma} = u$. In other words, $H \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z}) = C_2 \wr \mathbb{Z}$.

Furthermore, $G_{743} = \langle H, a \rangle$ and H is normal in G_{743} because $u^a = v^{-1}$, $v^a = u^{-1}$ and $\sigma^a = \sigma$. Thus $G_{743} = C_2 \ltimes (C_2 \wr \mathbb{Z})$, where the action of C_2 on H is specified above and coincides with the one in G_{739} . Therefore $G_{743} \cong G_{739}$.

744. Wreath recursion: $a = \sigma(c, b), b = (b, a), c = (a, a).$

114

Since $(a^{-1}c)^2 = (c^{-1}ab^{-1}a, b^{-1}ac^{-1}a)$ and $c^{-1}ab^{-1}a = ((c^{-1}ab^{-1}a)^{-1}, a^{-1}c)$, the element $(a^{-1}c)^2$ fixes the vertex 01 and its section at this vertex is equal to $a^{-1}c$. Hence, $a^{-1}c$ has infinite order.

The element $c^{-1}ab^{-1}a$ also has infinite order, fixes the vertex 00 and its section at this vertex is equal to $c^{-1}ab^{-1}a$. Therefore G_{744} is not contracting.

We have $b^{-1}c^{-1}ba^{-1}ca = (1, a^{-1}c^{-1}ac), ab^{-1}c^{-1}ba^{-1}c = (ca^{-1}c^{-1}a, 1)$, hence by Lemma 4 the group is not free.

747 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(c, c), b = (b, a), c = (a, a)$.

All generators have order 2 and a commutes with c. Conjugating this group by the automorphism $\gamma = (\gamma, c\gamma)$ yields an isomorphic group generated by automaton $a' = \sigma$, b' = (b', a') and c' = (a', a'). On the other hand we obtain the same automaton after conjugating G_{739} by $\mu = (\mu, a\mu)$ (here a denotes the generator of G_{739}).

748 $\cong D_4 \times C_2$. Wreath recursion: $a = \sigma(a, a), b = (c, a), c = (a, a)$.

Since a is nontrivial and b and c have a as a section, none of the generators is trivial. All generators have order 2. Indeed, we have $a^2 = (a^2, a^2)$, $b^2 = (c^2, a^2)$, $c^2 = (a^2, a^2)$, showing that a^2 , b^2 and c^2 generate a self-similar group in which no element is active. Therefore $a^2 = b^2 = c^2 = 1$. Since $ac = \sigma$ we have that $(ac)^2 = 1$. Therefore a and c commute. Since $(bc)^2 = ((ca)^2, 1) = 1$, we see that b and c also commute. Further, the relations $(ab)^2 = (ac, 1) = (\sigma, 1) \neq 1$ and $(ab)^4 = 1$ show that a and b generate the dihedral group D_4 . It remains to be shown that $c \notin \langle a, b \rangle$. Clearly c could only be equal to one of the four elements 1, b, aba, and abab in D_4 that stabilize level 1. However, c is nontrivial, differs from b at 0 (the section $b|_0 = c$ is not active, while $c|_0 = a$ is active), differs from aba at 1 (the section $(aba)|_1 = aca$ is not active, while $c|_1 = a$ is

active), and differs from *abab* at 1 (the section of *abab* at 1 is trivial). This completes the proof.

749. Wreath recursion: $a = \sigma(b, a), b = (c, a), c = (a, a)$.

The element $(a^{-1}c)^4$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1}c$. Hence, $a^{-1}c$ has infinite order.

We have $ac^{-1} = \sigma(ba^{-1}, 1)$, $ba^{-1} = \sigma(1, cb^{-1})$, $cb^{-1} = (ac^{-1}, 1)$, Thus the subgroup generated by these elements is isomorphic to $IMG(1 - \frac{1}{z^2})$ (see [BN06]).

We have $c^{-1}b = (a^{-1}c, 1)$, $ac^{-1}ba^{-1} = (1, ca^{-1})$. Thus, by Lemma 4 the group is not free.

748 $\cong G_{848} \cong C_2 \wr \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = (c, a), c = (a, a)$.

It is proven below that $G_{848} \cong G_{2190}$ and for G_{2190} we have $a = \sigma(c, a), b = \sigma(a, a), c = (a, a)$. Therefore $G_{2190} = \langle a, b, c \rangle = \langle a, c, c^{-1}b = \sigma \rangle = \langle a = (c, a)\sigma, c = (a, a), a\sigma = (c, a) \rangle = G_{750}$.

752. Wreath recursion: $a = \sigma(b, b), b = (c, a), c = (a, a)$.

The group G_{752} is a contracting group with nucleus consisting of 41 elements. It is a virtually abelian group, containing \mathbb{Z}^3 as a subgroup of index 4.

All generators have order 2.

Let x=ca, y=babc, and $K=\langle x,y\rangle$. Since $xy=((cbab)^{ca},abcb)=((y^{-1})^x,abcb)$ and $yx=(cbab,abcb)=(y^{-1},abcb)$ the elements x and y commute. Conjugating by $\gamma=(\gamma,bc\gamma)$ yields the self-similar copy K' of K generated by $x'=\sigma((y')^{-1},(x')^{-1})$ and $y'=\sigma((y')^{-1}x',1)$, where $x'=x^{\gamma}$ and $y'=y^{\gamma}$. Since $(x')^2=((x')^{-1}(y')^{-1},(y')^{-1}(x')^{-1})$ and $(y')^2=((y')^{-1}x',(y')^{-1}x')$, the virtual endomorphism of K' is given by

$$A = \left(\begin{array}{cc} -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{array} \right).$$

The eigenvalues $\lambda = -\frac{1}{2} \pm \frac{1}{2}i$ of this matrix are not algebraic integers, and therefore, by the results in [NS04], the group $K' \cong K$ is free abelian of rank 2.

Let $H = \langle ba, cb \rangle$. The index of $\operatorname{Stab}_H(1)$ in G is 4, since the index of $\operatorname{Stab}_H(1)$ in H is 2 and the index of H in G is 2 (the generators have order 2). We have $\operatorname{Stab}_H(1) = \langle cb, cb^{ba}, (ba)^2 \rangle$. If we conjugate the generators of $\operatorname{Stab}_H(1)$ by g = (1, b), we obtain

$$g_1 = (cb)^g = (x^{-1}, 1),$$

 $g_2 = ((cb)^{ba})^g = (1, x),$
 $g_3 = ((ba)^2)^g = (y^{-1}, y).$

116

Therefore, g_1 , g_2 , and g_3 commute. If $g_1^{n_1}g_2^{n_2}g_3^{n_3}=1$, then we must have $x^{-n_1}y^{-n_3}=x^{n_2}y^{n_3}=1$. Since K is free abelian, this implies $n_1=n_2=n_3=0$. Thus, $\operatorname{Stab}_H(1)$ is a free abelian group of rank 3.

753. Wreath recursion: $a = \sigma(c, b), b = (c, a), c = (a, a)$.

Since $ab^{-1} = \sigma(1, ba^{-1})$, this element is conjugate to the adding machine.

For a word w in $w \in \{a^{\pm 1}, b^{\pm 1}, c^{\pm 1}\}^*$, let $|w|_a$, $|w|_b$ and $|w|_c$ denote the sum of the exponents of a, b and c in w. Let w represents the element $g \in G$. If $|w|_a$ and $|w|_b$ are odd, then g acts transitively on the first level, and $g^2|_0$ is represented by a word w_0 , which is the product (in some order) of all first level sections of all generators appearing in w. Hence, $|w_0|_a = |w|_b + 2|w|_c$ and $|w_0|_b = |w|_a$ are odd again. Therefore, similarly to Lemma 1, any such element has infinite order.

In particular c^2ba has infinite order. Since $a^4 = (caca, a^4, acac, a^4)$ and $caca = (baca, c^2ba, bac^2, caba)$, the element a^4 has infinite order (and so does a). Since a^4 fixes the vertex 01 and its section at that vertex is equal to a^4 , the group G_{753} is not contracting.

We have $cb^{-1} = (ac^{-1}, 1), acb^{-1}a^{-1} = (1, bac^{-1}b^{-1}),$ hence by Lemma 4 the group is not free.

756 $\cong G_{748} \cong D_4 \times C_2$. Wreath recursion: $a = \sigma(c, c), b = (c, a), c = (a, a)$.

All generators have order 2. The generator c commutes with both a and b. Since $(ab)^2 = (ca, ca)$ the order of ca is 4 and the group is isomorphic to $D_4 \times C_2$

766 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(a, a)$, b = (b, b), c = (a, a).

The state b is trivial. The states a and c form a 2-state automaton generating $C_2 \times C_2$ (see Theorem 7).

767 \cong $G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(1, a), b = (b, b), c = (a, a) = a^2$.

The state b is trivial. The automorphism a is the binary adding machine.

768 $\cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = (b, b), c = (a, a)$.

The states a and c form a 2-state automaton generating \mathbb{Z} (see Theorem 7) in which $c=a^{-2}$.

770 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(b, b)$, b = (b, b), c = (a, a).

The state b is trivial. The states a and c form a 2-state automaton generating $C_2 \times C_2$ (see Theorem 7).

771 $\cong \mathbb{Z}^2$. Wreath recursion: $a = \sigma(c, b), b = (b, b), c = (a, a)$.

The group G_{771} is finitely generated, abelian, and self-replicating. Therefore, it is free [NS04]. Since b = 1 the rank is 1 or 2. We prove that the rank is 2, by showing that $c^n \neq a^m$, unless n=m=0. By way of contradiction, let $c^n=a^m$ for some integer n and m and choose such integers with minimal |n|+|m|. Since c^n stabilizes level 1, m must be even and we have $(a^n,a^n)=c^n=a^m=(c^{m/2},c^{m/2})$, implying $a^n=c^{m/2}$. By the minimality assumption, m must be 0, which then implies that n must be 0 as well.

774 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(c,c)$, b = (b,b), c = (a,a).

The state b is trivial. The states a and c form a 2-state automaton generating $C_2 \times C_2$ (see Theorem 7).

generating $C_2 \times C_2$ (see Theorem 7). **775** $\cong C_2 \ltimes IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$. Wreath recursion: $a = \sigma(a,a), b = (c,b), c = (a,a)$.

All generators have order 2. Further, $ac = ca = \sigma(1,1)$ and $ba = \sigma(ba, ca)$. Hence, for the subgroup $H = \langle ba, ca \rangle \cong G_{2853} \cong IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$.

Since the generators have order 2, H is normal subgroup of index 2 in G_{775} . Moreover $(ba)^a = (ba)^{-1}$ and $(ca)^a = ca$. Therefore $G \cong C_2 \ltimes H$, where C_2 is generated by a and the action of a on H is given above.

Conjugating the generators by $g=\sigma(g,g)$ we obtain the wreath recursion

$$a' = \sigma(a', a'), \qquad b' = (b', c'), \qquad c' = (a', a'),$$

where $a' = a^g$, $b' = b^g$ and $c' = c^g$. This is the wreath recursion defining G_{793} . Denote G_{793} by G and its generators by a, b, and c (we continue working only with G_{793}). Thus

$$a = \sigma(a, a),$$
 $b = (b, c),$ $c = (a, a).$

The generators have order 2. Moreover ac = ca and $\langle a, c \rangle = C_2 \times C_2$ is the Klein group. Denote $A = \langle a, c \rangle$.

The element x = ba has infinite order, since x^2 fixes 00, and has itself as a section at 00. Note that

$$x = ba = (b, c)\sigma(a, a) = \sigma(ca, ba) = \sigma(\sigma, x).$$

and, therefore, $x^2 = (x\sigma, \sigma x) = (x, \sigma, \sigma, x)$.

Proposition 1. The subgroup $H = \langle x, y \rangle$ of G, where x = ba and y = cabc is torsion free.

Proof. The first level decompositions of $x^{\pm 1}$ and $y^{\pm 1}$ and the second level

decompositions of x and y are given by

$$\begin{split} x &= \sigma(\sigma, x) \\ y &= cabc = \sigma aaba\sigma = \sigma ba\sigma = x^{\sigma} = \sigma(x, \sigma) \\ x^{-1} &= \sigma(x^{-1}, \sigma) \\ y^{-1} &= \sigma(\sigma, x^{-1}) \\ x &= \sigma(\sigma(1, 1), \sigma(\sigma, x)) = \mu(1, 1, \sigma, x) \\ y &= x^{\sigma} = \mu(\sigma, x, 1, 1), \end{split}$$

where $\mu = \sigma(\sigma, \sigma)$ permutes the first two levels of the tree as $00 \leftrightarrow 11$, $10 \leftrightarrow 01$. We encode this as the permutation $\mu = (03)(12)$.

For a word w over $\{x^{\pm 1}, \sigma\}$, denote by $\#_x(w)$ and $\#_{\sigma}(w)$ the total number of appearances of x and x^{-1} and the number of appearances of σ in w, respectively.

Note that x and x^{-1} act as the permutation (03)(12) on the second level, and σ acts as the permutation (02)(13). These permutations have order 2, commute, and their product is (01)(23), which is not trivial. Thus, a tree automorphisms represented by a word w over $\{x^{\pm 1}, \sigma\}$ cannot be trivial unless both $\#_x(w)$ and $\#_{\sigma}(w)$ are even.

Let g be an element of H that can be written as $g = z_1 z_2 \dots z_n$, for some $z_i \in \{x^{\pm 1}, y^{\pm 1}\}, i = 1, \dots, n$.

If n is odd, the element g cannot have order 2. By way of contradiction assume otherwise. For z in $\{x^{\pm 1}, y^{\pm 1}\}$ denote $z' = \sigma z$. Thus, for instance $x' = (\sigma, x)$ and $y' = (x, \sigma)$. Note that

$$g^2 = (z_1 z_2 \dots z_n)^2 = (z_1')^{\sigma} z_2' (z_3')^{\sigma} z_4' \dots (z_n')^{\sigma} z_1' (z_2')^{\sigma} \dots z_n' = (w_0, w_1),$$

where the words w_i over $\{x^{\pm 1}, \sigma\}$ are such that

$$\#_x(w_i) = \#_\sigma(w_i) = n,$$
 (8)

for i = 1, 2. The last claim holds because exactly one of z'_i and $(z'_i)^{\sigma}$ contributes $x^{\pm 1}$ to w_0 and σ to w_1 , respectively, while the other contributes the same letters to w_1 and w_0 , respectively. Since n is odd, (8) shows that neither w_0 nor w_1 can be 1 and therefore g^2 cannot be 1.

Assume that H contains an element of finite order. In particular, this implies that H must contain an element of order 2. Let $g = z_1 z_2 \dots z_n$ be such an element of the shortest possible length, where $z_i \in \{x^{\pm 1}, y^{\pm 1}\}$, $i = 1, \dots, n$.

Note that n must be even. Therefore,

$$g = z_1 z_2 \dots z_n = (z_1')^{\sigma} z_2' \dots (z_{n-1}')^{\sigma} z_n' = (w_0, w_1),$$

where w_0 and w_1 are words over $\{x^{\pm 1}, \sigma\}$. Moreover, as elements in H, the orders of w_0 and w_1 divide 2 and the order of at least one of them is 2. We claim that

$$\#_x(w_0) \equiv \#_\sigma(w_0) \equiv \#_x(w_1) \equiv \#_\sigma(w_0) \mod 2.$$
 (9)

The congruence $\#_x(w_i) \equiv \#_{\sigma}(w_i) \mod 2$ holds because $\#_x(w_i) +$ $\#_{\sigma}(w_i) = n$ is even. For the other congruences, observe that whenever z_i' or $(z_i')^{\sigma}$ contributes $x^{\pm 1}$ or σ to w_0 , respectively, it contributes σ or $x^{\pm 1}$ to w_1 , respectively. Therefore $\#_x(w_0) = \#_{\sigma}(w_1)$ and $\#_{\sigma}(w_0) = \#_x(w_1)$.

If the numbers in (9) are even, then w_0 and w_1 represent elements in H and can be rewritten as words over $\{x^{\pm 1}, y^{\pm 1}\}$ of lengths at most $\#_x(w_0) = n - \#_{\sigma}(w_0)$ and $\#_x(w_1) = n - \#_{\sigma}(w_1)$, respectively. If both of these lengths are shorter than n then none of them can represent an element of order 2 in H. Otherwise, one of the words w_i is a power of x and the other is trivial. Sice x has infinite order this shows that q cannot have order 2.

If the numbers in (9) are odd, then, for $i = 1, 2, w_i$ can be rewritten as σu_i , where u_i are words of odd length over $\{x^{\pm 1}, y^{\pm 1}\}$. Let $w_0 =$ $\sigma t_1 \dots t_m$, where m is odd, and t_j are letters in $\{x^{\pm 1}, y^{\pm 1}\}, j = 1, \dots, m$. We have

$$w_0 = t'_1(t'_2)^{\sigma} \dots (t'_{m-1})^{\sigma} t'_m = (w_{00}, w_{01}),$$

where w_{00} and w_{01} are words of odd length m over $\{x^{\pm 1}, \sigma\}$. Moreover, exactly one of the words w_{00} and w_{01} has even number of σ 's and this word can be rewritten as a word over $\{x^{\pm 1}, y^{\pm 1}\}$ of odd length. However, an element in H represented by such a word cannot have order dividing 2. This completes the proof.

Since

Since
$$x^a = abaa = ab = x^{-1}, \qquad y^a = acabca = cbac = y^{-1},$$

$$x^b = bbab = ab = x^{-1}, \qquad y^b = bcabcb = bacbacab = xy^{-1}x^{-1},$$

$$x^c = cbac = y^{-1}, \qquad y^c = ccabcc = ab = x^{-1},$$

we see that H is the normal closure of x in G. Further, $G = \{x, y, a, c\}$ and G = AH. It follows from Proposition 1 that $A \cap H = 1$ (since A is finite) and therefore $G = A \ltimes H$.

Proposition 2. The group G is a regular, weakly branch group, branching over H''.

Proof. The group G is infinite self-similar group acting on a binary three. Therefore it is level transitive by Lemma 3.

120

Since

$$x^{2} = (x, \sigma, \sigma, x)$$
$$y^{-1}x^{2}y = (y, x^{-1}\sigma x, \sigma, x)$$

we have that

$$H'' \times \langle \sigma, x^{-1} \sigma x \rangle'' \times \langle \sigma \rangle'' \times \langle x \rangle'' \preceq H''.$$

On the other hand, $\langle \sigma, x^{-1}\sigma x \rangle$ is metabelian (in fact dihedral, since the generators have order 2) and $\langle \sigma \rangle$ and $\langle x \rangle$ are abelian (cyclic). Therefore

$$H'' \times 1 \times 1 \times 1 \leq H''$$
.

The group H'' is normal in G, since it is characteristic in the normal subgroup H. Finally, H'' is not trivial. For instance it is easy to show that $[[x,y],[x,y^{-1}]] \neq 1$ (see [BGK⁺b]).

776. Wreath recursion: $a = \sigma(b, a), b = (c, b), c = (a, a).$

The element $(b^{-1}a)^4$ stabilizes the vertex 00 and its section at this vertex is equal to $(b^{-1}a)^{-1}$. Hence, $b^{-1}a$ has infinite order. Furthermore, by Lemma 1 ab has infinite order, which yields that a,c and b also have infinite order, because $a^2 = (ab, ba)$. Since $b^n = (c^n, b^n)$ we obtain that b^n belong to the nucleus for all $n \ge 1$. Thus G_{776} is not contracting.

We have $a^{-1}ba^{-1}c = (1, b^{-1}c), ba^{-1}ca^{-1} = (cb^{-1}, 1)$, hence by Lemma 4 the group is not free.

777. Wreath recursion: $a = \sigma(c, a), b = (c, b), c = (a, a)$.

The states a, c form the 2-state automaton generating \mathbb{Z} (see Theorem 7). So the group is not torsion and $G_{777} = \langle a, b \rangle$. Since c has infinite order, so has b. Therefore the relation $b^n = (c^n, b^n)$ implies that b^n belong to the nucleus for all $n \geq 1$. Thus G_{777} is not contracting.

Also we have $ab^{-1} = \sigma(1, ab^{-1})$ is the adding machine. Since $a^{-3} = \sigma(1, a^3)$ elements ab^{-1} and a^{-3} generate the Brunner-Sidki-Vierra group (see [BSV99]).

779. Wreath recursion: $a = \sigma(b, b), b = (c, b), c = (a, a)$.

The element $(ab^{-1})^2$ stabilizes the vertex 01 and its section at this vertex is equal to $(ab^{-1})^{-1}$. Hence, ab^{-1} has infinite order.

780. Wreath recursion: $a = \sigma(c, b), b = (c, b), c = (a, a).$

The element $(c^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1}a$. Hence, $c^{-1}a$ has infinite order. Since $[c,a]|_{100} = (c^{-1}a)^a$ and 100 is fixed under the action of [c,a] we obtain that [c,a] also has infinite order. Finally, [c,a] stabilizes the vertex 00 and its section at this vertex is [c,a]. Therefore G_{780} is not contracting.

783 $\cong G_{775} \cong C_2 \ltimes IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$. Wreath recursion: $a = \sigma(c,c)$, b = (c,b), c = (a,a).

All generators have order 2 and ac=ca. If we conjugate the generators of this group by the automorphism $\gamma=(c\gamma,\gamma)$ we obtain the wreath recursion

$$a' = \sigma(1, 1),$$
 $b' = (c', b'),$ $c' = (a', a'),$

where $a'=a^{\gamma}$, $b'=b^{\gamma}$, and $c'=c^{\gamma}$. The same wreath recursion is obtained after conjugating G_{775} by $\mu=(a\mu,\mu)$ (where a denotes the generator of G_{775}).

Since $bca = \sigma(bca, a), G_{783} = \langle acb, a, c \rangle \cong G_{2205}.$

802 \cong $C_2 \times C_2 \times C_2$. Wreath recursion: $a = \sigma(a, a), b = (c, c), c = (a, a)$. Direct calculation.

803 $\cong G_{771} \cong \mathbb{Z}^2$. Wreath recursion: $a = \sigma(b, a), b = (c, c), c = (a, a)$.

The group G_{771} is finitely generated, abelian, and self-replicating. Therefore, it is free abelian [NS04]. Let ϕ : $\operatorname{Stab}_{G_{803}}(1) \to G_{803}$ be the $\frac{1}{2}$ -endomorphism associated to the vertex 0, given by $\phi(g) = h$, provided g = (h, *). The matrix of the linear map $\mathbb{C}^3 \to \mathbb{C}^3$ induced by ϕ with to the basis corresponding to the triple $\{a, b, c\}$ is given by

$$A = \left(\begin{array}{ccc} \frac{1}{2} & 0 & 1\\ \frac{1}{2} & 0 & 0\\ 0 & 1 & 0 \end{array}\right).$$

The eigenvalues are $\lambda_1=1,\,\lambda_2=-\frac{1}{4}-\frac{1}{4}i\sqrt{7}$ and $\lambda_3=-\frac{1}{4}+\frac{1}{4}i\sqrt{7}$. Let $v_i,\,i=1,2,3$, be eigenvectors corresponding to the eigenvalues $\lambda_i,\,i=1,2,3$. Note that v_1 may be selected to be equal to $v_1=(2,1,1)$. This shows that $a^2bc=1$ in G_{803} and the rank of $G_{803}=\langle a,c\rangle$ is at most 2. We will prove that $a^{2m}c^n\neq 1$ (except when m=n=0) by proving that iterations of the action of A eventually push the vector v=(2m,0,n) out of the set $D=\{(2i,j,k),i,j,k\in\mathbb{Z}\}$ corresponding to the first level stabilizer.

Let $v = a_1v_1 + a_2v_2 + a_3v_3$. The vector v is not a scalar multiple of v_1 . Therefore either $a_2 \neq 0$ or $a_3 \neq 0$. Since $|\lambda_2| = |\lambda_3| < 1$, we have $A^t(v) = a_1v_1 + \lambda_2^t a_2v_2 + \lambda_3^t a_3v_3 \to a_1v_1$, as $t \to \infty$. Note that, since $a_2 \neq 0$ or $a_3 \neq 0$, $A^t(v)$ is never equal to a_1v_1 . Choose a neighborhood U of a_1v_1 that does not contain vectors from D, except possibly the vector a_1v_1 . For t large enough t, the vector $A^t(v)$ is in U and is therefore outside of D.

Thus the rank of G_{803} is 2.

804 $\cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = (c, c), c = (a, a)$.

Indeed, the states a and c form a 2-state automaton generating the cyclic group \mathbb{Z} (see Theorem 7). Since $b=a^4$ we are done.

806 $\cong G_{802} \cong C_2 \times C_2 \times C_2$. Wreath recursion: $a = \sigma(b, b), b = (c, c), c = (a, a)$.

Direct calculation.

807 $\cong G_{771} \cong \mathbb{Z}^2$. Wreath recursion: $a = \sigma(c, b), b = (c, c), c = (a, a)$.

The same arguments as in the case of G_{771} show that G_{807} is free abelian. It has a relation $c^2ba^2=1$ and, hence, it has either rank 1 or rank 2. Analogically to G_{803} we consider a $\frac{1}{2}$ -endomorphism $\phi: \operatorname{Stab}_{G_{807}}(1) \to G_{807}$, and a linear map $A: \mathbb{C}^3 \to \mathbb{C}^3$ induced by ϕ . It has the following matrix representation with respect to the basis corresponding to the triple $\{a,b,c\}$:

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ \frac{1}{2} & 0 & 0\\ \frac{1}{2} & 1 & 0 \end{array}\right).$$

Its characteristic polynomial $\chi_A(\lambda) = -\lambda^3 + \frac{1}{2}\lambda + \frac{1}{2}$ has three distinct complex roots $\lambda_1 = 1$, $\lambda_2 = -\frac{1}{2} - \frac{1}{2}i$ and $\lambda_3 = -\frac{1}{2} + \frac{1}{2}i$. Analogically for v = (2m, 0, n) we get that $A^t(v)$ will be pushed out from the domain corresponding to $\operatorname{Stab}_{G_{807}}(1)$. Thus $c^n a^{2m} \neq 1$ in G_{807} and $G_{807} \cong \mathbb{Z}^2$.

810 $\cong G_{802} \cong C_2 \times C_2 \times C_2$. Wreath recursion: $a = \sigma(c, c), b = (c, c), c = (a, a)$.

Direct calculation.

820 $\cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = (b, a), c = (b, a)$.

The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7) and c=b.

821. Lamplighter group $\mathbb{Z} \wr C_2$. Wreath recursion: $a = \sigma(b, a), b = (b, a), c = (b, a)$.

The states a and b form a 2-state automaton generating the Lamplighter group (see Theorem 7) and c = b.

824 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = (b, a), c = (b, a)$.

The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7) and c = b.

838 \cong $C_2 \ltimes \langle s, t \mid s^2 = t^2 \rangle$. Wreath recursion: $a = \sigma(a, a), b = \sigma(a, b), c = (b, a)$.

All generators have order 2. Consider the subgroup $H = \langle ba = \sigma(ba,1), ca = \sigma(1,ab) \rangle \cong G_{2860} = \langle s,t \mid s^2 = t^2 \rangle$. This subgroup is normal in G_{838} because the generators have order 2. Since $G_{838} = \langle H,a \rangle$, it has a structure of a semidirect product $\langle a \rangle \ltimes H = C_2 \ltimes \langle s,t \mid s^2 = t^2 \rangle$ with the action of a on H as $(ba)^b = (ba)^{-1}$ and $(ca)^b = (ca)^{-1}$.

839 $\cong G_{821}$. Lamplighter group $\mathbb{Z} \wr C_2$. Wreath recursion: $a = \sigma(b, a)$, b = (a, b), c = (b, a).

The states a and b form a 2-state automaton generating the Lamplighter group (see Theorem 7). Since $b^{-1}a = \sigma = ac^{-1}$, we see that

 $c = a^{-1}ba$ and $G = \langle a, b \rangle$.

840. Wreath recursion: $a = \sigma(c, a), b = (a, b), c = (b, a)$.

The element $(b^{-1}a)^2$ stabilizes the vertex 01 and its section at this vertex is equal to $b^{-1}a$. Hence, $b^{-1}a$ has infinite order.

The element $(c^{-1}b)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(c^{-1}b)^{-1}$. Hence, $c^{-1}b$ has infinite order. Since $(b^{-1}a^{-1}b^{-1}cba)^2|_{00000000} = c^{-1}b$ and the vertex 00000000 is fixed under the action of $(b^{-1}a^{-1}b^{-1}cba)^2$ we obtain that $b^{-1}a^{-1}b^{-1}cba$ also has infinite order. Finally, $b^{-1}a^{-1}b^{-1}cba$ stabilizes the vertex 0001 and has itself as a section at this vertex. Therefore G_{840} is not contracting.

We have $b^{-1}a^{-1}ca = (1, b^{-1}c^{-1}bc), ab^{-1}a^{-1}c = (cb^{-1}c^{-1}b, 1)$, hence by Lemma 4 the group is not free.

842 $\cong G_{838} \cong C_2 \ltimes \langle s, t \mid s^2 = t^2 \rangle$. Wreath recursion: $a = \sigma(b, b)$, $b = \sigma(a, b)$, c = (b, a).

All generators have order 2. Consider the subgroup $H=\langle u=ba=\sigma(1,ba)=\sigma(1,u^{-1}),v=ca=\sigma(ab,1)=\sigma(u^{-1},1)\rangle$. Let us prove that $H\cong W=\langle s,t\mid s^2=t^2\rangle$. Indeed, the relation $u^2=v^2$ is satisfied, so H is a homomorphic image of W with respect to the homomorphism induced by $s\mapsto u$ and $t\mapsto v$. Each element of W can be written in its normal form $t^r(st)^ls^n,\ n\in\mathbb{Z},l\geq 0,r\in\{0,1\}$. It suffices to prove that images of these words (except for the identity word, of course) represent nonidentity elements in H.

We have $u^{2n} = (u^{-n}, u^{-n}), u^{2n+1} = \sigma(a^{-n}, a^{-n-1})$ for any integer n; $(uv)^l = (u^{2l}, 1)$ for any integer l. Thus

$$(uv)^l u^{2n} = (u^{-2l-n}, u^{-n}) \neq 1$$

in G if $n \neq 0$ or $l \neq 0$ since u has infinite order, as it is conjugate to the adding machine.

Furthermore,

$$v(uv)^{l}u^{2n} = \sigma(u^{-2l-n-1}, u^{-n}) \neq 1,$$
$$(uv)^{l}u^{2n+1} = \sigma(u^{-n}, u^{-2l-n-1}) \neq 1$$

since they act nontrivially on the first level of the tree.

Finally, $v(uv)^l u^{2n+1} = (u^{-2l-n-2}, u^{-n}) = 1$ if and only if n = 0 and l = -1, which is not the case, because l must be nonnegative. Thus $H \cong W$.

The subgroup H is normal in G_{842} because generators are of order 2. Since $G_{842} = \langle H, a \rangle$, it has a structure of a semidirect product $\langle a \rangle \ltimes H = C_2 \ltimes \langle s, t \mid s^2 = t^2 \rangle$ with the action of a on H as $(ba)^b = (ba)^{-1}$ and $(ca)^b = (ca)^{-1}$. Therefore it has the same structure as G_{838} .

124

843. Wreath recursion: $a = \sigma(c, b), b = (a, b), c = (b, a)$.

The element $c^{-1}a = \sigma(a^{-1}c, 1)$ is a conjugate of the adding machine. Therefore, it acts transitively on the level of the tree and has infinite order.

Since $(c^{-1}ab^{-1}a)^2$ fixes the vertex 000 and its section at this vertex is equal to $c^{-1}a$, we obtain that $c^{-1}ab^{-1}a$ has infinite order. Since the element $c^{-1}ab^{-1}a$ fixes the vertex 10 and has itself as a section at this vertex, G_{843} is not contracting.

We have $c^{-1}a^{-1}ba = (1, a^{-1}c^{-1}ac)$, $ac^{-1}a^{-1}b = (ca^{-1}c^{-1}a, 1)$, hence by Lemma 4 the group is not free.

846 $\cong C_2 * C_2 * C_2$. Wreath recursion: $a = \sigma(c, c), b = (a, b), c = (b, a)$.

The automaton [846] was studied during the Advanced Course on Automata Groups in Bellaterra, Spain, in the summer of 2004 and is since called the Bellaterra automaton. We present here a proof that $G_{846} = C_2 * C_2 * C_2$, based on the concept of dual automata. A different proof, still based on dual automata, is given in [Nek05].

Let $\mathcal{A} = (Q, X, \pi, \tau)$ be a finite automaton. Its *dual* automaton, by definition, is $\mathcal{A}' = (X, Q, \pi', \tau')$, where $\pi'(x, q) = \tau(q, x)$, and $\tau'(x, q) = \pi(q, x)$. Thus the dual automaton is obtained by exchanging the roles of the states and the alphabet (and the roles of the transition and output function) in a given automaton. The notion od dual automata is not new, but there is a recent renewed interest based on the new results and applications in [MNS00, GM05, BŠ06, VV05].

If in addition to \mathcal{A} , both \mathcal{A}' and $(\mathcal{A}^{-1})'$ are invertible, the automaton \mathcal{A} is called *fully invertible* (or *bi-reversible*). Examples of such automata are the automaton 2240 generating a free group with three generators [VV05], Bellaterra automaton [846], and various automata constructed in [GM05], generating free groups of various ranks.

We now consider the automaton [846] and its dual more closely. Since the generators a, b, and c have order 2, in order to prove that $G_{846} \cong C_2 * C_2 * C_2$ we need to show that no word in $w \in R_n$, $n \geq 1$, is trivial in G_{846} , where R_n is the set of reduced words over $\{a,b,c\}$ of length n (here a word is reduced if it does not contain aa, bb, or cc). For every n > 0, the set of words in R_n that are nontrivial in G_{846} is nonempty, since the word $r_n = acbcbcb \cdots$ of length n acts nontrivially on level 1. If we prove that the dual automaton acts transitively on the sets R_n , $n \geq 1$, this would mean that r_n is a section of every element of G_{846} that can be represented as a reduced word of length n. Therefore, every word in R_n would represent a nontrivial element in G_{846} and our proof would be complete.

The automaton dual to 846 is the invertible automaton defined by

the wreath recursion

$$A = (acb)(B, A, A), B = (ac)(A, B, B),$$
 (10)

where the three coordinates in the recursion represent the sections at a, b, and c, respectively. Denote $D = \langle A, B \rangle$. The set $R = \bigcup_{n \geq 0} R_n$ of all reduced words over $\{a, b, c\}$ is a subtree of the ternary tree $\{a, b, c\}^*$ and this subtree R is invariant under the action of D (this is because the set $\{aa, bb, cc\}$ is invariant under the action of D). The structure of R is as follows. The root of R has three children a, b and c, each of which is a root of a binary tree. We want to understand the actio of D on the subtree R. It is given by

$$\begin{array}{rcl}
A & = & (acb)(B_a, A_b, A_c) \\
B & = & (ac)(A_a, B_b, B_c)
\end{array} \tag{11}$$

where $A_a, A_b, A_c, B_a, B_b, B_c$ are automorphisms of the binary trees hanging down from the vertices a, b and c. After identification of these three trees with the binary tree $\{0,1\}^*$, the action of A_a, A_b, \ldots, B_c is defined by

$$\begin{array}{rcl}
A_{a} & = & (A_{b}, A_{c}), \\
A_{b} & = & \sigma(B_{a}, A_{c}), \\
A_{c} & = & \sigma(B_{a}, A_{b}), \\
B_{a} & = & \sigma(B_{b}, B_{c}), \\
B_{b} & = & \sigma(A_{a}, B_{c}), \\
B_{c} & = & \sigma(A_{a}, B_{b}).
\end{array} \tag{12}$$

Using Lemma 2 one can verify that B_b acts level transitively on the binary tree. This is sufficient to show that D acts transitively on R, since it acts transitively on the first level, B stabilizes the vertex b, and its section at b is B_b .

The fact that G_{846} is not contracting follows now from the result of Nekrashevych [Nek07a], that a contracting group can not have free subgroups. Alternatively, it is sufficient to observe that aba has infinite order, stabilizes the vertex 01 and has itself as a section at this vertex.

847
$$\cong D_4$$
. Wreath recursion: $a = \sigma(a, a), b = (b, b), c = (b, a)$.

The state b is trivial. The states a and c form a 2-state automaton generating D_4 (see Theorem 7).

848
$$\cong C_2 \wr \mathbb{Z}$$
. Wreath recursion: $a = \sigma(b, a), b = (b, b), c = (b, a)$.

The state b is trivial and a is the adding machine. Every element $g \in G_{848}$ has the form $g = \sigma^i(a^n, a^m)$. On the other hand, $c = (1, a), c^{ac^{-1}} = (a, 1)$, so $\operatorname{Stab}_G(1) = \{(a^n, a^m)\} \cong \mathbb{Z}^2$. Since $ac^{-1} = \sigma$ we see that $G \cong C_2 \wr \mathbb{Z}$.

849. Wreath recursion: $a = \sigma(c, a)$, b=(b,b), c = (b,a).

The state b is trivial. The element $a^2c = (ac, ca^2)$ is nontrivial because its section at 0 is ac, and ac acts nontrivially on level 1. The automorphism $(a^2c)^2$ fixes the vertex 00 and its section at this vertex is equal to a^2c . Therefore a^2c has infinite order. Further, the section of a^2c at 100 coincides with a^2c , implying that G_{849} is not contracting.

The group G_{849} is regular weakly branch group over its commutator G'_{840} . This is clear since the group is self-replicating and $[a^{-1},c]\cdot [c,a]=$

Conjugation of the generators of G_{849} by $\mu = \sigma(\mu, c^{-1}\mu)$ yields the eath recursion $x = \sigma(yx, 1), \qquad y = (x, 1),$ ere $x = a^{\mu}$ and $y = c^{\mu}$. Further, we have wreath recursion

$$x = \sigma(yx, 1), \qquad y = (x, 1),$$

where $x = a^{\mu}$ and $y = c^{\mu}$. Further, we have

126

$$x = \sigma(yx, 1), \qquad yx = \sigma(yx, x),$$

and the last wreath recursion coincides with the one defining the automaton 2852. Therefore $G_{849} \cong G_{2852}$ (see G_{2852} for more information on this group).

851 $\cong G_{847} \cong D_4$. Wreath recursion: $a = \sigma(b, b)$, b = (b, b), c = (b, a). Direct calculation.

852. Basilica group $\mathcal{B} = IMG(z^2 - 1)$. Wreath recursion: $a = \sigma(c, b)$, b = (b, b), c = (b, a).

This group was studied in [GZ02a], where it is shown that \mathcal{B} is not a sub-exponentially amenable group, it does not contain free subgroups of rank 2, and that the monoid generated by a and b is free. Some spectral considerations are provided in [GZ02b]. Bartholdi and Virág showed in [BV05] that \mathcal{B} is amenable, distinguishing the Basilica group as the first example of an amenable group that is not sub-exponentially amenable.

855 $\cong G_{847} \cong D_4$. Wreath recursion: $a = \sigma(c, c)$, b = (b, b), c = (b, a). Direct calculation.

856 $\cong C_2 \ltimes G_{2850}$. Wreath recursion: $a = \sigma(a, a), b = (c, b), c = (b, a)$.

All generators have order 2, hence $H = \langle ba, ca \rangle$ is normal in G_{856} . Furthermore, $ba = \sigma(ba, ca)$, $ca = \sigma(1, ba)$, and therefore $H = G_{2850}$. Thus $G_{856} = \langle a \rangle \ltimes H \cong C_2 \ltimes G_{2850}$, where $(ba)^a = (ba)^{-1}$ and $(ca)^a =$ $(ca)^{-1}$. The group is not contracting since G_{2850} is not contracting.

857. Wreath recursion: $a = \sigma(b, a), b = (c, b), c = (b, a)$.

By using the approach used for G_{875} , we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since c = (b, a) and b = (c, b), both b and c have infinite order and G_{857} is not a contracting group.

858. Wreath recursion: $a = \sigma(c, a), b = (c, b), c = (b, a).$

The element $ab^{-1} = \sigma(1, ab^{-1})$ is the adding machine.

By using the approach used for G_{875} , we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since c = (b, a) and b = (c, b), both b and c have infinite order and G_{857} is not a contracting group.

We have $c^{-1}b^{-1}aba^{-1}b = (1, a^{-1}b^{-1}aca^{-1}b), a^{-1}c^{-1}b^{-1}aba^{-1}ba = (a^{-2}b^{-1}aca^{-1}ba, 1)$, hence by Lemma 4 the group is not free.

860. Wreath recursion: $a = \sigma(b, b), b = (c, b), c = (b, a)$.

The element $(ba^{-1})^2$ stabilizes the vertex 11 and its section at this vertex is equal to $(ba^{-1})^{-1}$. Hence, ba^{-1} has infinite order.

Furthermore, $bc^{-1} = (cb^{-1}, ba^{-1})$ implies that the order of bc^{-1} is infinite. Since this element stabilizes vertex 00 and its section at this vertex is equal to bc^{-1} , all its powers belong to the nucleus. Thus, G_{860} is not contracting.

861. Wreath recursion: $a = \sigma(b, b), b = (a, a), c = (b, a)$.

The element $a^{-1}c = \sigma(1, c^{-1}a)$ is conjugate to the adding machine and has infinite order.

864. Wreath recursion: $a = \sigma(c, c), b = (c, b), c = (b, a).$

The element $(ab^{-1})^2$ stabilizes the vertex 11 and its section at this vertex is equal to ab^{-1} . Hence, ab^{-1} has infinite order.

Furthermore, $cb^{-1}=(bc^{-1},ab^{-1})$ implies that the order of cb^{-1} is infinite. Since this element stabilizes vertex 00 and its section at this vertex is equal to cb^{-1} , G_{864} is not contracting.

865 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = (a, c), c = (b, a)$.

All generators have order 2. Since abac = (acab, 1) and acab = (1, abac), we see that c = aba and $G_{865} = \langle a, b \rangle$. The section of $(ba)^2$ at the vertex 0 is $(ba)^{-1}$, so ba has infinite order and $G_{865} \cong D_{\infty}$.

Note that the group is conjugate to G_{932} by the automorphism $\delta = (a\delta, \delta)$.

866. Wreath recursion: $a = \sigma(b, a), b = (a, c), c = (b, a).$

The element $(c^{-1}b)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1}b$, which is nontrivial. Hence, $c^{-1}b$ has infinite order.

The element $(b^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1}a$. Hence, $b^{-1}a$ has infinite order. Since $b^{-1}c^{-1}ba^{-1}ba|_{10} = (b^{-1}a)^b$ and vertex 10 is fixed under the action of $b^{-1}c^{-1}ba^{-1}ba$ we obtain that $b^{-1}c^{-1}ba^{-1}ba$ also has infinite order. Finally, $b^{-1}c^{-1}ba^{-1}ba$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{866} is not contracting.

869. Wreath recursion: $a = \sigma(b, b), b = (a, c), c = (b, a)$.

All generators have order 2. By Lemma 1 ab has infinite order, which implies that babcba also has infinite order, because it fixes the vertex 000 and its section at this vertex is equal to ab. But babcba fixed 10 and has itself as a section at this vertex. Thus, G_{869} is not contracting.

870: Baumslag-Solitar group BS(1,3). Wreath recursion: $a = \sigma(c,b)$, b = (a,c), c = (b,a).

The automaton satisfies the conditions of Lemma 1. In particular ab has infinite order. Since bc = (ab, ca), $a^2 = (bc, cb)$, we obtain that bc and a have infinite order. Since b = (a, c), b also has infinite order. Since b has infinite order, fixes the vertex 10 and has itself as a section at this vertex, G_{870} is not contracting.

The element $\mu = b^{-1}a = \sigma(1, a^{-1}b) = \sigma(1, \mu^{-1})$ is conjugate to the adding machine and therefore has infinite order. Since $a^{-1}c = \sigma(1, c^{-1}a)$ we see that $a^{-1}c = \mu$. Therefore $c = ab^{-1}a$ and $G_{870} = \langle a, b \rangle = \langle \mu, b \rangle$.

We claim that $b^{-1}\mu b = \mu^3$. Since $c = ab^{-1}a$, we have

$$ab^{-1}ab^{-1}ab^{-1}a^{-1}b = (ba^{-1}bc^{-1}b^{-1}a, ca^{-1}ba^{-1}) = (ba^{-1}ba^{-1}ba^{-1}b^{-1}a, 1).$$

But $ba^{-1}ba^{-1}ba^{-1}b^{-1}a$ is a conjugate of the inverse of $ab^{-1}ab^{-1}ab^{-1}a^{-1}b$, which shows that $ab^{-1}ab^{-1}ab^{-1}a^{-1}b = 1$, and the last relation is equivalent to $b^{-1}\mu b = \mu^3$.

Since b and μ have infinite order, $G_{870} \cong BS(1,3)$.

See [BŠ06] for realizations of BS(1, m) for any value of $m, m \neq \pm 1$.

874
$$\cong C_2 \ltimes G_{2852}$$
. Wreath recursion: $a = \sigma(a, a), b = (b, c), c = (b, a)$.

All the generators have order 2, hence $H = \langle ba, ca \rangle$ is normal in G_{874} . Furthermore, $ba = \sigma(ca, ba)$, $ca = \sigma(1, ba)$, therefore $H = G_{2852}$. Thus $G_{874} = \langle a \rangle \ltimes H \cong C_2 \ltimes G_{2852}$, where $(ba)^a = (ba)^{-1}$ and $(ca)^a = (ca)^{-1}$. In particular, G_{874} is not contracting and has exponential growth.

875. Wreath recursion: $a = \sigma(b, a), b = (b, c), c = (b, a)$.

The equalities

$$a(10^{\infty}) = 010^{\infty}, \qquad b(10^{\infty}) = 10^{\infty}, \qquad c(10^{\infty}) = 110^{\infty},$$

show that all members of the forward orbit of 10^{∞} under the action of a have only finitely many 1's and that the position of the rightmost 1 cannot decrease under the action of a. Since $a(10^{\infty}) = 010^{\infty}$, the forward orbit of 10^{∞} under the action of a can never return to 10^{∞} and a has infinite order.

Note that the above equalities also show that no nonempty words w over $\{a, b, c\}$ satisfies a relation of the form w = 1 in G_{875} . First note that c = (b, a) and b = (b, c), implying that b and c have infinite order. Thus $b^n \neq 1$, for n > 0. On the other hand, for any word w that contains

a or c, $w(10^{\infty}) \neq 10^{\infty}$ (again, since the position of the rightmost 1 moves to the right and never decreases).

Since b has infinite order and b = (b, c), G_{875} is not contracting.

876. Wreath recursion: $a = \sigma(c, a), b = (b, c), c = (b, a).$

By Lemma 2 the elements ba and acb^2a^2cb act transitively on the levels of the tree and, hence, have infinite order. Since $(b^8)|_{1100001100} = acb^2a^2cb$ and vertex 1100001100 is fixed under the action of b^8 we obtain that b also has infinite order. Finally, b stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{876} is not contracting.

We have $c^{-1}b=(1,a^{-1}c),ac^{-1}ba^{-1}=(ca^{-1},1)$, hence by Lemma 4 the group is not free.

878 $\cong C_2 \ltimes IMG(1-\frac{1}{z^2})$. Wreath recursion: $a=\sigma(b,b),\ b=(b,c),\ c=(b,a)$.

Let x=bc and y=ca. Since all generators have order 2, the index of the subgroup $H=\langle x,y\rangle$ in G_{878} is 2, H is normal and $G_{878}\cong C_2\ltimes H$, where C_2 is generated by c. The action of C_2 on H is given by $x^c=x^{-1}$ and $y^c=y^{-1}$. We have x=bc=(1,ca)=(1,y) and $y=ca=\sigma(ab,1)=\sigma(y^{-1}x^{-1},1)$. An isomorphic copy of H is obtained by exchanging the letters 0 and 1, yielding the wreath recursion x=(y,1) and $y=\sigma(1,y^{-1}x^{-1})$. The last recursion defines $IMG(1-\frac{1}{z^2})$ [BN06]. Thus, $G_{878}\cong C_2\ltimes IMG(1-\frac{1}{z^2})$.

879. Wreath recursion: $a = \tilde{\sigma}(c, b), b = (b, c), c = (b, a)$.

The element $c^{-1}a = \sigma(a^{-1}c, 1)$ is conjugate to the adding machine and has infinite order.

By Lemma 2 the element ca acts transitively on the levels of the tree and, hence, has infinite order. Since $(b^2)|_{1101} = ca$ and vertex 1101 is fixed under the action of b^2 we obtain that b also has infinite order. Finally, b stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{879} is not contracting.

882. Wreath recursion: $a = \sigma(c, c), b = (b, c), c = (b, a).$

The element $(ca^{-1}cb^{-1})^2$ stabilizes the vertex 00 and its section at this vertex is equal to $ca^{-1}cb^{-1}$. Hence, $ca^{-1}cb^{-1}$ has infinite order.

883 $\cong C_2 \ltimes G_{2841}$. Wreath recursion: $a = \sigma(a, a), b = (c, c), c = (b, a)$.

All generators have order 2, hence $H = \langle ba, ca \rangle$ is normal in G_{883} . Furthermore, $ba = \sigma(ca, ca)$, $ca = \sigma(1, ba)$, therefore $H = G_{2841}$. Thus $G_{883} = \langle a \rangle \ltimes H \cong C_2 \ltimes G_{2841}$, where $(ba)^a = (ba)^{-1}$ and $(ca)^a = (ca)^{-1}$. In particular, G_{883} is not contracting and has exponential growth.

884. Wreath recursion: $a = \sigma(b, a), b = (c, c), c = (b, a).$

The element $(b^{-1}ca^{-1}c)^2$ stabilizes the vertex 0 and its section at this vertex is equal to $(b^{-1}ca^{-1}c)^{-1}$. Hence, $b^{-1}ca^{-1}c$ has infinite order. Since $[b,a]^2|_{0100} = (b^{-1}ca^{-1}c)^c$ and 0100 is fixed under the action of $[b,a]^2$ we obtain that [b,a] also has infinite order. Finally, [b,a] stabilizes the vertex

00 and its section at this vertex is [b, c] = [b, a]. Therefore G_{884} is not contracting.

885. Wreath recursion: $a = \sigma(c, a), b = (c, c), c = (b, a).$

The element $(c^{-1}b)^2$ stabilizes the vertex 10 and its section at this vertex is equal to $c^{-1}b$. Hence, $c^{-1}b$ has infinite order. Furthermore, $c^{-1}b$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{885} is not contracting.

We have $b^{-1}aba^{-1} = (1, c^{-1}aca^{-1}), a^{-1}b^{-1}ab = (a^{-1}c^{-1}ac, 1)$, hence by Lemma 4 the group is not free.

887. Wreath recursion: $a = \sigma(b, b), b = (c, c), c = (b, a).$

The element $(ac^{-1})^4$ stabilizes the vertex 001 and its section at this vertex is equal to $(ac^{-1})^2$, which is nontrivial. Hence, ac^{-1} has infinite order.

888. Wreath recursion: $a = \sigma(c, b), b = (c, c), c = (b, a).$

The element $a^{-1}c = \sigma(1, c^{-1}a)$ is conjugate to the adding machine and has infinite order. Since $c^{-1}b\big|_1 = a^{-1}c$ and vertex 1 is fixed under the action of $c^{-1}b$ we obtain that $c^{-1}b$ also has infinite order. Finally, $c^{-1}b$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{888} is not contracting.

We have $c^{-1}ab^{-1}a = (1, a^{-1}b), ac^{-1}ab^{-1} = (ca^{-1}bc^{-1}, 1)$, hence by Lemma 4 the group is not free.

891 $\cong C_2 \ltimes (\mathbb{Z} \wr C_2)$. Wreath recursion: $a = \sigma(c, c), b = (c, c), c = (b, a)$.

Let x = ac and y = cb. Since all generators have order 2, the index of the subgroup $H = \langle x, y \rangle$ in G_{891} is 2, H is normal and $G_{891} \cong C_2 \ltimes H$, where C_2 is generated by c. The action of C_2 on H is given by $x^c = x^{-1}$ and $y^c = y^{-1}$.

In fact, to support the claim that H has index 2 in G_{891} we need to prove that $c \notin H$. We will prove a little bit more than that. Let w = 1 be a relation in G_{891} where w is a word over $\{a, b, c\}$. The number of occurrences of a in w must be even (otherwise w would act nontrivially on level 1). Similarly, the number of occurrences of c in w is even. Indeed, if it were odd, then exactly one of the words w_0 and w_1 in the decomposition $w = (w_0, w_1)$ would have odd number of occurrences of the letter a, and the action of w would be nontrivial on level 2. Finally, we claim that the number of occurrences of b in w is also even. Otherwise the number of c in both w_0 and w_1 would be odd and the action of w would be nontrivial on level 3. Thus every word over $\{a, b, c\}$ representing 1 must have even number of occurrences of each of the three letters. Note that this implies that the abelianization of G_{891} is $C_2 \times C_2 \times C_2$.

We now prove that H is isomorphic to the Lamplighter group $\mathbb{Z} \wr C_2$.

The group H is self-similar, which can be seen from

$$x = ac = \sigma(cb, ca) = \sigma(y, x^{-1}), \qquad y = cb = (bc, ac) = (y^{-1}, x).$$

Consider the elements $s_n = \sigma^{y^n} = y^{-n}xy^{n+1}, n \in \mathbb{Z}$ (note that $xy = \sigma$). For n > 0, we have $s_0 s_1 \cdots s_{n-1} = x^n y^n$ and $s_{-n} s_{-n+1} \cdots s_{-1} = s_{-n+1} \cdots s_{-n+1} \cdots s_{-n+1} = s_{-n+1} \cdots s_{-n+1} \cdots s_{-n+1} = s_{-n+1} \cdots s$ $y^n x^n$. On the other hand, $s_n = y^{-n} \sigma y^n = \sigma(x^{-n} y^{-n}, y^n x^n)$ and $s_{-n} =$ $y^n \sigma y^{-n} = \sigma(x^n y^n, y^{-n} x^{-n})$, implying

$$s_n = \sigma(s_{-1}s_{-2}\cdots s_{-n}, s_{-n}\cdots s_{-2}s_{-1})$$

$$s_{-n} = \sigma(s_0s_1\cdots s_{n-1}, s_{n-1}\cdots s_1s_0).$$

and

$$s_{-n} = \sigma(s_0 s_1 \cdots s_{n-1}, s_{n-1} \cdots s_1 s_0).$$

By induction on n we obtain that the depth of s_n is 2n+1 for $n \geq 0$ and the depth of s_{-n} is 2n for n>0 (depth of a finitary element is the lowest level at which all sections of the element are trivial). This implies that all s_i , $i \in \mathbb{Z}$ are different, have order 2 (they are conjugates of σ), and commute (for each i and each level m all sections of s_i at level m are equal). Therefore y has infinite order and $H = \langle x, y \rangle = \langle y, \sigma \rangle \cong \mathbb{Z} \wr C_2$.

Since y has infinite order, stabilizes the vertex 00 and has itself as a section at this vertex, G_{891} is not contracting.

 $\mathbf{919} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = (a, b), c = (c, a)$.

The states a, b form a 2-state automaton generating D_{∞} (see Theorem 7) and c = aba.

920. Wreath recursion: $a = \sigma(b, a), b = (a, b), c = (c, a).$

The element $(ac^{-1})^2$ stabilizes the vertex 00 and its section at this vertex is equal to ac^{-1} . Hence, ba^{-1} has infinite order.

923. Wreath recursion: $a = \sigma(b, b), b = (a, b), c = (c, a).$

The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7).

 $924 \cong G_{870}$. Baumslag-Solitar group BS(1,3). Wreath recursion: a = $\sigma(c,b), b = (a,b), c = (c,a).$

This fact is proved in [BS06].

928 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = (b, b), c = (c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b is trivial.

929 \cong G_{2851} . Wreath recursion: $a = \sigma(b, a), b = (b, b), c = (c, a)$.

See G_{2851} for an isomorphism (in fact the groups coincide as subgroups of $Aut(X^*)$).

930 $\cong G_{821}$. Lamplighter group $\mathbb{Z} \wr C_2$. Wreath recursion: $a = \sigma(c, a)$, b = (b, b), c = (c, a).

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7) and b is trivial.

 $\mathbf{932} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(b, b), b = (b, b), c = (c, a)$.

We have b=1 and $a^2=c^2=1$. The element $ac=\sigma(c,a)$ is clearly nontrivial. Since $(ac)^2=(ac,ca)$, this element has infinite order. Thus $G\cong D_{\infty}$.

933 \cong G_{849} . Wreath recursion: $a = \sigma(c, b), b = (b, b), c = (c, a)$.

132

See G_{2852} for an isomorphism between G_{933} and G_{2852} and G_{849} for an isomorphism between G_{2852} and G_{849} .

936 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(c, c), b = (b, b), c = (c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b is trivial.

937 $\cong C_2 \ltimes G_{929}$. Wreath recursion: $a = \sigma(a, a), b = (c, b), c = (c, a)$.

All generators have order 2, hence $H = \langle ca, ba \rangle = \langle ca, caba \rangle$ is normal in G_{937} . Furthermore, $ca = \sigma(1, ca)$, $caba = \sigma(caba, ca)$, therefore $H = G_{929}$. Thus $G_{937} = \langle a \rangle \ltimes H \cong C_2 \ltimes G_{929}$, where $(ba)^a = (ba)^{-1}$ and $(ca)^a = (ca)^{-1}$. In particular, G_{937} is regular weakly branch over H', has exponential growth and is not contracting.

938. Wreath recursion: $a = \sigma(b, a), b = (c, b), c = (c, a).$

The element $(b^{-1}a^{-1}ca)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $((b^{-1}a^{-1}ca)^{-1})^{a^{-1}c}$. Hence, $b^{-1}a^{-1}ca$ has infinite order. Furthermore, $b^{-1}a^{-1}ca$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{938} is not contracting.

We have $c^{-1}b = (1, a^{-1}b), a^{-1}c^{-1}ba = (a^{-2}ba, 1)$, hence by Lemma 4 the group is not free.

939. Wreath recursion: $a = \sigma(c, a), b = (c, b), c = (c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{939} is neither torsion, nor contracting, and has exponential growth.

941. Wreath recursion: $a = \sigma(b, b), b = (c, b), c = (c, a)$.

The second iteration of the wreath recursion is

$$a = (02)(13)(c, b, c, b),$$
 $b = (c, a, c, b),$ $c = (23)(c, a, b, b).$

Conjugation by g = (cg, g, g, bg) gives the wreath recursion

$$a' = (02)(13),$$
 $b = (c', a', c', b'),$ $c = (23)(c', a', 1, 1),$

where $a' = a^g$, $b' = b^g$, and $c' = c^g$. The last recursion coincides with the second iteration of the recursion

$$\alpha = \sigma, \qquad \beta = (\gamma, \beta), \qquad \gamma = (\gamma, \alpha).$$

Conjugating the last recursion by $h = (\gamma h, h)$ yields the recursion defining G_{945} . Thus, $G_{941} \cong G_{945} \cong C_2 \ltimes IMG(z^2 - 1)$ (see G_{945}). The limit space is half of the Basilica.

942. Wreath recursion: $a = \sigma(c, b)$, b = (c, b), c = (c, a).

The Lamplighter group $L = \mathbb{Z} \wr C_2$ can be defined as the group generated by a' and b' given by the wreath recursion (see Theorem 7)

$$a' = \sigma(a', b'),$$

$$b' = (a', b').$$

Let $H = \langle a,b \rangle \leq G_{942}$. We will show that H and L are isomorphic. Let Y^* be the subtree of X^* consisting of all words over the alphabet $Y = \{01,11\}$. The element b fixes the letter in Y, while a swaps them. Since $a_{01} = b_{01} = a$, $a_{11} = b_{11} = b$, the tree Y^* is invariant under the action of H. Moreover, the action of H on Y^* coincides with the action of the Lamplighter group $L = \langle a', b' \rangle$ on X^* (after the identification $01 \leftrightarrow 0$, $11 \leftrightarrow 1$). This implies that the map $\phi : H \to L$ given by $a \mapsto a'$, $b \mapsto b'$ can be extended to a homomorphism. We claim that this homomorphism is in fact an isomorphism. Let w = w(a,b) be a group word representing an element of the kernel of ϕ . Since w(a',b') represents the identity in the lamplighter group L, the total exponent of a in b must be even and the total exponent b of both b and b in b must be b. Therefore the element b and b is stabilized the top two levels of the tree b and can be decomposed as

$$g = (c^{\varepsilon}, *, c^{\varepsilon}, *),$$

where the *'s are words over a and b representing the identity in H (these words correspond precisely to the first level sections of w(a',b') in L). Since $\varepsilon = 0$, we see that g = 1 and the kernel of ϕ is trivial.

Thus, the Lamplighter group is a subgroup of G_{942} , which shows that G_{942} is not a torsion group, it is not free, and has exponential growth. Since b = (c, b) and b has infinite order, G_{942} is not a contracting group. $\mathbf{945} \cong G_{941} \cong C_2 \ltimes IMG(z^2 - 1)$. Wreath recursion: $a = \sigma(c, c)$, b = (c, b), c = (c, a).

All generators have order 2. Since $ab = \sigma(1,cb)$ and cb = (1,ab) we see that $H = \langle ab,cb \rangle \cong G_{852} = IMG(z^2-1)$. This subgroup is normal in G_{945} because the generators have order 2. Since $G_{945} = \langle H,b \rangle$, it has a structure of a semidirect product $\langle b \rangle \ltimes H = C_2 \ltimes IMG(z^2-1)$ with the action of b on H given by $(ab)^b = (ab)^{-1}$ and $(cb)^b = (cb)^{-1}$. It follows that G_{945} is regular weakly branch over H' and has exponential growth. See G_{941} for an isomorphism.

955 $\cong G_{937} \cong C_2 \ltimes G_{929}$. Wreath recursion: $a = \sigma(a, a), b = (b, c), c = (c, a)$.

All generators have order 2. Consider the subgroup $H = \langle ba = \sigma(ca, ba), ca = \sigma(1, ca) \rangle \cong G_{929}$. This subgroup is normal in G_{955} because all generators have order 2. Since $G_{955} = \langle H, a \rangle$, it has a structure

134

of a semidirect product $\langle a \rangle \ltimes H = C_2 \ltimes G_{929}$ with the action of a on H given by $(ba)^b = (ba)^{-1}$ and $(ca)^b = (ca)^{-1}$. It is proved above that G_{937} has the same structure. It follows that G_{955} is regular weakly branch over H' and has exponential growth.

956. Wreath recursion: $a = \sigma(b, a), b = (b, c), c = (c, a).$

The element $(c^{-1}b)^2$ stabilizes the vertex 10 and its section at this vertex is equal to $(c^{-1}b)^{-1}$. Hence, $c^{-1}b$ has infinite order. Furthermore, $c^{-1}b$ stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{956} is not contracting.

We have $c^{-1}b^{-1}aba^{-1}b=(1,a^{-1}c^{-1}aba^{-1}c),a^{-1}c^{-1}b^{-1}aba^{-1}ba=(a^{-2}c^{-1}aba^{-1}ca,1),$ hence by Lemma 4 the group is not free.

957. Wreath recursion: $a = \sigma(c, a), b = (b, c), c = (c, a)$.

The states a, c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{957} is neither torsion, nor contracting and has exponential growth.

959. Wreath recursion: $a = \sigma(b, b), b = (b, c), c = (c, a)$.

The element $(a^{-1}c)^4$ stabilizes the vertex 00 and its section at this vertex is equal to $(a^{-1}c)^{-1}$. Hence, $a^{-1}c$ has infinite order.

Furthermore, since $c^{-1}b = (c^{-1}b, a^{-1}c)$, this element also has infinite order. Thus, G_{959} is not contracting.

960. Wreath recursion: $a = \sigma(c, b), b = (b, c), c = (c, a).$

Define $x=ac^{-1},\ y=ba^{-1}$ and $z=cb^{-1}.$ Then $x=\sigma(1,y),\ y=\sigma(z,z^{-1})$ and z=(z,x).

The element $(zxy)^8$ stabilizes the vertex 001010 and its section at this vertex is equal to $xy^{-1}z = xyz = (zxy)^{z^{-1}}$ (since $y^2 = 1$). Hence, zxy has infinite order.

Denote $t = (b^{-1}c)^4(b^{-1}a)(c^{-1}a)^5(b^{-1}c)$. Then t^2 stabilizes the vertex 00 and $t^2\big|_{00} = t^{b^{-1}c}$. Hence, t has infinite order. Let $s = c^{-2}b^2$. Since $s^{32}\big|_{111000000100} = t^c$ and s^{32} fixes 111000000100, we obtain that s also has infinite order. Finally, s stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{960} is not contracting.

963. Wreath recursion: $a = \sigma(c, c), b = (b, c), c = (c, a)$.

All generators have order 2. The element $ac = \sigma(1, ca)$ is conjugate to the adding machine and has infinite order.

Furthermore, since cb = (cb, ac), this element also has infinite order. Thus, G_{963} is not contracting.

964 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(a, a), b = (c, c), c = (c, a)$.

All generators have order 2. The elements u = acba = (ca, 1) and v = bc = (1, ca) generate \mathbb{Z}^2 because $ca = \sigma(1, ca)$ is the adding machine and has infinite order. We have $cacb = \sigma$ and $\langle u, v \rangle$ is normal in $H = \langle u, v, \sigma \rangle$

because $u^{\sigma} = v$ and $v^{\sigma} = u$. In other words, $H \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z}) = C_2 \wr \mathbb{Z}$.

Furthermore, $G_{964} = \langle H, a \rangle$ and H is normal in G_{972} because $u^a = v^{-1}$, $v^a = u^{-1}$ and $\sigma^a = \sigma$. Thus $G_{964} = C_2 \ltimes (C_2 \wr \mathbb{Z})$, where the action of C_2 on H is specified above and coincides with the one in G_{739} . Therefore $G_{964} \cong G_{739}$.

965. Wreath recursion: $a = \sigma(b, a), b = (c, c), c = (c, a)$.

The element $(ac^{-1})^2$ stabilizes the vertex 01 and its section at this vertex is equal to $(ac^{-1})^{-1}$. Hence, ac^{-1} has infinite order.

By Lemma 2 the element a acts transitively on the levels of the tree and, hence, has infinite order. Since c = (c, a) we obtain that c also has infinite order. Therefore G_{965} is not contracting.

We have $bc^{-1} = (1, ca^{-1}), a^{-1}bc^{-1}a = (a^{-1}c, 1)$, hence by Lemma 4 the group is not free.

the group is not free. **966.** Wreath recursion: $a = \sigma(c, a), b = (c, c), c = (c, a).$

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{966} is neither torsion, nor contracting, and has exponential growth.

Since b = (c, c) we obtain that G_{966} can be embedded into the wreath product $C_2 \wr (\mathbb{Z} \wr \mathbb{C}_2)$. This shows that G_{966} is solvable.

968. Wreath recursion: $a = \sigma(b, b), b = (c, c), c = (c, a)$.

We will show that this group contains \mathbb{Z}^5 as a subgroup of index 16. It is a contracting group, with nucleus consisting of 73 elements (the self-similar closure of the nucleus consists of 77 elements).

All generators have order 2. Let $x=(ac)^2$, y=bcba, and $K=\langle x,y\rangle$. Conjugating x and y by $\gamma=(b\gamma,a\gamma)$ yields the self-similar copy K' of K generated by $x'=((y')^{-1},(y')^{-1})$ and $y=\sigma(x',y')$, where $x'=x^{\gamma}$ and $y'=y^{\gamma}$. Since $[x',y']=([x',y']^{(y')^{-1}},1)$ K' is abelian. The matrix of the corresponding virtual endomorphism is given by

$$A = \left(\begin{array}{cc} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{array}\right).$$

The eigenvalues $\lambda = \frac{1}{4} \pm \frac{1}{4}\sqrt{7}i$ of this matrix are not algebraic integers. Therefore K' (ad therefore K as well) is free abelian of rank 2, by the results in [NS04].

The subgroup $H = \langle ab, bc \rangle$ has index 2 in G_{968} (the generators of G_{968} have order 2). The second level stabilizer $\operatorname{Stab}_{H}(2)$ has index 8 in H (the quotient group is isomorphic to the dihedral group D_4). The stabilizer $\operatorname{Stab}_{H}(2)$, is generated by $(bc)^2$, $((bc)^2)^{ba}$, $(ab)^2$, $((ab)^2)^{bc}$, $((ab)^2)^{(bc)^{ba}}$,

and $((ab)^2)^{bc(bc)^{ba}}$. Conjugating these elements by g = (b, c, b, 1) gives

$$g_{1} = ((bc)^{2})^{g} = (bcbc)^{g} = (1, 1, y, y^{-1}),$$

$$g_{2} = ((bc)^{2})^{bag} = (acbcba)^{g} = (y, y, 1, 1),$$

$$g_{3} = ((ab)^{2})^{bcg} = (cbabac)^{g} = (1, x, x, 1),$$

$$g_{4} = ((ab)^{2})^{g} = (abab)^{g} = (1, x, 1, x^{-1}),$$

$$g_{5} = ((ab)^{2})^{(bc)^{ba}g} = (abcbabacba)^{g} = (x, 1, 1, x^{-1}),$$

$$g_{6} = ((ab)^{2})^{bc(bc)^{ba}g} = (abcacbabacacba)^{g} = (x, 1, x, 1).$$

Therefore, $\operatorname{Stab}_{H}(2)$ is abelian and $g_{6} = g_{5}g_{3}g_{4}^{-1}$. If $\prod_{i=1}^{5} g_{i}^{n_{i}} = 1$, then $x^{n_{5}}y^{n_{2}} = x^{n_{3}+n_{4}}y^{n_{2}} = x^{n_{3}}y^{n_{1}} = x^{n_{4}+n_{5}}y^{n_{1}} = 1$. Since K is free abelian, we obtain $n_{i} = 0, i = 1, \ldots, 5$. Therefore $\operatorname{Stab}_{H}(2)$ is a free abelian group of rank 5.

969. Wreath recursion: $a = \sigma(c, b), b = (c, c), c = (c, a)$.

The element $(cb^{-1})^4$ stabilizes the vertex 100 and its section at this vertex is equal to cb^{-1} . Hence, cb^{-1} has infinite order.

We have $bc^{-1} = (1, ca^{-1})$, $ca^{-1} = \sigma(ab^{-1}, 1)$, $ab^{-1} = \sigma(1, bc^{-1})$, hence the subgroup generated by these elements is isomorphic to $IMG(1-\frac{1}{r^2})$ (see [BN06]).

We also have $c^{-1}b = (1, a^{-1}c), a^{-1}c^{-1}ba = (b^{-1}a^{-1}cb, 1)$, hence by Lemma 4 the group is not free.

972 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion : $a = \sigma(c, c), b = (c, c), c = (c, a)$.

All generators have order 2. The elements u = acba = (ca, 1) and v = bc = (1, ac) generate \mathbb{Z}^2 because $ca = \sigma(ac, 1)$ is conjugate to the adding machine and has infinite order. Also we have $ba = \sigma$ and $\langle u, v \rangle$ is normal in $H = \langle u, v, \sigma \rangle$ because $u^{\sigma} = v$ and $v^{\sigma} = u$. In other words, $H \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z}) = C_2 \wr \mathbb{Z}$.

Furthermore, $G_{972} = \langle H, a \rangle$ and H is normal in G_{972} because $u^a = v^{-1}$, $v^a = u^{-1}$ and $\sigma^a = \sigma$. Thus $G_{972} = C_2 \ltimes (C_2 \wr \mathbb{Z})$, where the action of C_2 on H is specified above and coincides with the one in G_{739} . Therefore $G_{972} \cong G_{739}$.

1090 \cong C_2 . Wreath recursion: $a = \sigma(a, a)$, b = (b, b), c = (b, b). Both b and c are trivial and $a^2 = 1$.

1091 $\cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(b, a)$, b = (b, b), c = (b, b). Both b and c are trivial and a is the adding machine.

1094 $\cong G_{1090} \cong C_2$. Wreath recursion: $a = \sigma(b, b)$, b = (b, b), c = (b, b). Both b and c are trivial and $a^2 = 1$.

2190 \cong $G_{848} \cong C_2 \wr \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(a, a), c = (a, a)$.

First note that $c = a^{-2}$. Therefore $G = \langle a, b \rangle$, where $a = \sigma(a^{-2}, a)$, and $b = \sigma(a, a)$. Also, a has infinite order.

Consider the subgroup $H = \langle ba, ab \rangle < G$. The generators of H commute since $ba = (a^{-1}, a^2)$ and $ab = (a^2, a^{-1})$. Furthermore, $(ba)^n (ab)^m = (a^{-n+2m}, a^{2n-m}) = 1$ if and only if m = n = 0. Therefore $H \cong \mathbb{Z}^2$.

Consider the element $ba^2 = bc^{-1} = \sigma$. This element does not belong to H, since H stabilizes the first level of the tree. On the other hand $a = (ba)^{-1}ba^2 = (ba)^{-1}\sigma$ and $b = a^{-1}(ab)$ so $G = \langle \sigma, H \rangle$. Finally, $(ba)^{\sigma} = ab$ and $(ab)^{\sigma} = ba$ implies that H is normal in G and $G = C_2 \wr H \cong C_2 \wr \mathbb{Z} \cong G_{848}$.

Also note that $\langle a, a^b \rangle = G_{2212} \cong \mathbb{Z} *_{2\mathbb{Z}} \mathbb{Z}$.

2193. Wreath recursion: $a = \sigma(c, b), b = \sigma(a, a), c = (a, a)$.

Let $x = ca^{-1}$ and $y = ab^{-1}$. Then $x = \sigma(ab^{-1}, ac^{-1}) = \sigma(y, x^{-1})$ and $y = (ba^{-1}, ca^{-1}) = (y^{-1}, x)$. It is already shown (see G_{891}), that $\langle x, y \rangle$ is not contracting and is isomorphic to the Lamplighter group. Therefore G_{2193} is not a torsion group, it is not contracting, and has exponential growth.

2196 $\cong G_{802} \cong C_2 \times C_2 \times C_2$. Wreath recursion: $a = \sigma(c, c), b = \sigma(a, a), c = (a, a)$.

Direct calculation.

2199. Wreath recursion: $a = \sigma(c, a), b = \sigma(b, a), c = (a, a).$

By Lemma 2 the element ac acts transitively on the levels of the tree and, hence, has infinite order. Since ba = (ac, ba) we obtain that ba also has infinite order. Therefore G_{2199} is not contracting.

We have $b^{-2}abcba = b^{-2}aba^{-2}ba = 1$, and a and b do not commute, hence the group is not free.

2202. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, a), c = (a, a).$

The element $(b^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1}a$. Hence, $b^{-1}a$ has infinite order. Furthermore, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2202} is not contracting.

We have $cb^{-1}c^{-1}b = (1, ab^{-1}a^{-1}b), bcb^{-1}c^{-1} = (bab^{-1}a^{-1}, 1)$, hence by Lemma 4 the group is not free.

2203. Wreath recursion: $a = \sigma(a, c), b = \sigma(b, a), c = (a, a)$.

The states a and c form a 2-state automaton generating the infinite cyclic group \mathbb{Z} in which $c = a^{-2}$ (see Theorem 7).

Since $b^{-1}a|_1 = a^{-1}c$ and vertex 1 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{2203} is not contracting.

We have $c^{-2}ab=(1,a^{-2}cb),bc^{-2}a=(ba^{-2}c,1),$ hence by Lemma 4 the group is not free.

2204. Wreath recursion: $a = \sigma(b, c), b = \sigma(b, a), c = (a, a)$.

The element $(b^{-1}ac^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1}ac^{-1}a$. Hence, $b^{-1}ac^{-1}a$ has infinite order. Since $[c,a]^2\big|_{000} = (b^{-1}ac^{-1}a)^{a^{-1}cb}$ and 000 is fixed under the action of $[c,a]^2$ we obtain that [c,a] also has infinite order. Finally, [c,a] stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2204} is not contracting.

We have $ab^{-1} = (1, ca^{-1}), b^{-1}a = (a^{-1}c, 1)$, hence by Lemma 4 the group is not free.

2205 $\cong G_{775} \cong C_2 \ltimes IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$. Wreath recursion: $a = \sigma(c,c)$, $b = \sigma(b,a), c = (a,a)$.

See G_{783} for an isomorphism between G_{783} and G_{2205} .

2206 $\cong G_{748} \cong D_4 \times C_2$. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, a), c = (a, a)$.

Direct calculation.

2207. Wreath recursion: $a = \sigma(b, a), b = \sigma(c, a), c = (a, a)$.

The element $(c^{-1}a)^4$ stabilizes the vertex 000 and its section at this vertex is equal to $c^{-1}a$. Hence, $c^{-1}a$ has infinite order.

Since $b^{-1}a^{-1}b^{-1}aba\big|_{001}=(c^{-1}a)^a$ and the vertex 001 is fixed under the action of $b^{-1}a^{-1}b^{-1}aba$ we obtain that $b^{-1}a^{-1}b^{-1}aba$ also has infinite order. Finally, $b^{-1}a^{-1}b^{-1}aba$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2207} is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2209. Wreath recursion: $a = \sigma(a, b), b = \sigma(c, a), c = (a, a)$.

The element $(b^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(b^{-1}a)^{-1}$. Hence, $b^{-1}a$ has infinite order. Furthermore, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2209} is not contracting.

We have $aca^{-2}c^{-1}acac^{-1}a^{-2}cac^{-1}=1$, and a and c do not commute, hence the group is not free.

2210. Wreath recursion: $a = \sigma(b, b), b = \sigma(c, a), c = (a, a)$.

The element $(a^{-1}c)^2$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1}c$. Hence, $a^{-1}c$ has infinite order. Since $(b^{-1}a)^2\big|_{00} = a^{-1}c$ and 00 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2210} is not contracting.

We have $c^{-1}b^{-1}cb = (1, a^{-1}c^{-1}ac), bc^{-1}b^{-1}c = (ca^{-1}c^{-1}a, 1)$, hence by Lemma 4 the group is not free.

2212. Klein bottle group, $\langle a, b \mid a^2 = b^2 \rangle$. Wreath recursion: $a = \sigma(a, c)$, $b = \sigma(c, a)$, c = (a, a).

The states a and c form a 2-state automaton generating the infinite cyclic group \mathbb{Z} in which $c = a^{-2}$ (see Theorem 7).

cycnc group \mathbb{Z} in which $c=a^{-2}$ (see Theorem 7). We have $a=\sigma(a,a^{-2}),\ b=\sigma(a^{-2},a),\ \text{and}\ x=ab^{-1}=(a^{-3},a^3).$ Finally, since $x^a=b^{-1}a=(a^3,a^{-3})=x^{-1},$ we have $G_{2212}=\langle x,a\mid x^a=x^{-1}\rangle$ and G_{2212} is the Klein bottle group. Tietze transformations yield the presentation $G_{2212}=\langle a,b\mid a^2=b^2\rangle$ in terms of the generators a and b.

2213. Wreath recursion: $a = \sigma(b, c), b = \sigma(c, a), c = (a, a)$.

By Lemma 2 the element cb acts transitively on the levels of the tree and, hence, has infinite order. Since $(ba)|_{100} = cb$ and the vertex 100 is fixed under the action of ba we obtain that ba also has infinite order. Finally, ba stabilizes the vertex 01 and has itself as a section at this vertex. Therefore G_{2213} is not contracting.

vertex. Therefore G_{2213} is not contracting. We have $c^{-1}b^{-1}cb = (1, a^{-1}c^{-1}ac), bc^{-1}b^{-1}c = (ca^{-1}c^{-1}a, 1)$, hence by Lemma 4 the group is not free.

2214 \cong $G_{748} \cong D_4 \times C_2$. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, a), c = (a, a)$.

Direct calculation.

2226 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(b, b),$ and c = (a, a).

We have ba = (bc, ba), $bc = \sigma(ba, ba)$, and $b = \sigma(b, b)$. Therefore x, y and b satisfy the wreath recursion defining the automaton \mathcal{A}_{2394} . Thus $G_{2226} = G_{2394} \cong G_{820}$.

2229. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, b), c = (a, a)$.

Note that b is of order 2. Post-conjugating the recursion by (1, b) (which is equivalent to conjugating by the tree automorphism g = (g, bg) in $Aut(X^*)$ gives a copy of G_{2229} defined by

$$a = \sigma(bc, 1), \qquad b = \sigma, \qquad c = (a, bab)$$

The stabilizer of the first level is generated by

$$a^2 = (bc, bc),$$
 $c = (a, bab),$ $ba = (bc, 1),$ $bcb = (bab, a).$

Its projection on the first level is generated by

$$bc = \sigma(a, bab), \qquad a = \sigma(bc, 1), \qquad bab = \sigma(1, bc).$$

Furthermore.

$$bcbc = (baba, abab), \qquad abab = (1, bcbc), \qquad baba = (bcbc, 1),$$

which implies that bc is of order 2 and $a^{-1} = bab$. Hence, the projection of the stabilizer on the first level is generated by the recursion

$$a = \sigma(bc, 1),$$
 $bc = \sigma(a, a^{-1}).$

Post-conjugating by (1, a), we obtain the recursion

$$a = \sigma(a^{-1} \cdot bc, a), \qquad bc = \sigma,$$

which is the group $C_4 \ltimes \mathbb{Z}^2$ of all orientation preserving automorphisms of the integer lattice (see [BN06]). Note that the nucleus of G_{2229} consists of 52 elements.

2232 $\cong G_{730}$. Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(c,c)$, $b = \sigma(b, b), c = (a, a).$

Direct calculation.

140

2233. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, b), c = (a, a).$

Therefore, $\langle ba = (ba, ca), ca = \sigma \rangle = G_{932} \cong D_{\infty}$.

Conjugating by g = (ag, g), we obtain the recursion

$$\alpha=\sigma, \qquad \beta=\sigma(\gamma\beta,\alpha\beta), \qquad \gamma=(\alpha,\alpha),$$
 where $\alpha=a^g,\ \beta=b^g,$ and $\gamma=c^g.$ Therefore

$$\alpha = \sigma, \qquad \alpha\beta = (\gamma\alpha, \alpha\beta), \qquad \gamma\alpha = \sigma(\alpha, \alpha),$$

and the last wreath recursion defines a bounded automaton (see Section 3 for a definition). It follows from [BKN] that G_{2233} is amenable.

2234. Wreath recursion:
$$a = \sigma(b, a), b = \sigma(c, b), c = (a, a).$$

The element $(c^{-1}b)^4$ stabilizes the vertex 00 and its section at this vertex is equal to $(c^{-1}b)^{-1}$. Hence, $c^{-1}b$ has infinite order. Since $(b^{-1}a)|_{0}=c^{-1}b$ and 0 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2234} is not contracting.

We have $c^{-1}b^{-1}ac^{-1}a^2 = (1, a^{-1}c^{-1}b^2), ac^{-1}b^{-1}ac^{-1}a$ $(ba^{-1}c^{-1}b, 1)$, hence by Lemma 4 the group is not free.

2236. Wreath recursion: $a = \sigma(a, b), b = \sigma(c, b), c = (a, a).$

By Lemma 2 the element b acts transitively on the levels of the tree and, hence, has infinite order.

By Lemma 2 the element cb acts transitively on the levels of the tree and, hence, has infinite order. Since ba = (ba, cb) we obtain that ba also has infinite order. Since ba has itself as a section at 0 the group is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2237. Wreath recursion: $a = \sigma(b, b), b = \sigma(c, b), c = (a, a).$

By Lemma 2 the elements b and $(bc)^3$ acts transitively on the levels of the tree and, hence, have infinite order.

Since $(cba)^2|_{00000} = (bc)^3$ and 00000 is fixed under the action of $(cba)^2$ we obtain that cba also has infinite order. Finally, cba stabilizes the vertex 101 and has itself as a section at this vertex. Therefore G_{2237} is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2239. Wreath recursion: $a = \sigma(a, c), b = \sigma(c, b), c = (a, a).$

The group contains elements of infinite order by Lemma 1. In particular, ca has infinite order. Since $(ba)|_{100} = ca$ and the vertex 100 is fixed under the action of ba we obtain that ba also has infinite order. Finally, ba stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2239} is not contracting.

We have $ca^{-2}cba^{-1} = (1, c^{-1}abc^{-1}), a^{-1}ca^{-2}cb = (c^{-2}ab, 1),$ hence by Lemma 4 the group is not free.

We can also simplify the wreath recursion in the following way. Since $c = a^{-2}$ we have

$$a=\sigma(a,a^{-2}), \qquad b=\sigma(a^{-2},b).$$
 $ab=(a^{-4},ab), \qquad a=\sigma(a,a^{-2}),$ sen as $ab=(a^{-4},ab), \qquad a=\sigma(1,a^{-1}),$

Therefore

$$ab = (a^{-4}, ab), \qquad a = \sigma(a, a^{-2}).$$

which can be written as

$$ab = (a^{-4}, ab),$$
 $a = \sigma(1, a^{-1}),$

which is a subgroup of

of
$$\beta = (a, \beta), \qquad a = \sigma(1, a^{-1}).$$

2240. Free group of rank 3. Wreath recursion: $a = \sigma(b, c), b = \sigma(c, b),$ c = (a, a).

The automaton appeared for the first time in [Ale83]. The fact that G_{2240} is free group of rank 3 with basis $\{a, b, c\}$ is proved in [VV05]. This is the smallest automaton among all automata over a 2-letter alphabet generating a free nonabelian group.

The fact that G_{2240} is not contracting follows now from the result of Nekrashevych [Nek07a], that a contracting group cannot have free subgroups. Alternatively, $b^{-1}ca$ has infinite order, stabilizes the vertex 11 and has itself as a section at this vertex. Hence, the group is not contracting.

2241 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, b),$ c = (a, a).

Consider G_{747} . Its wreath recursion is given by $a = \sigma(c, c), b = (b, a),$ c=(a,a). All generators have order 2 and a commutes with c. Therefore $acb = \sigma(cab, c) = \sigma(acb, c)$ and we have $G_{747} = \langle a, acb, c \rangle = G_{2241}$. Thus $G_{2241} = G_{747} \cong G_{739}$.

 $G_{2241} = G_{747} \cong G_{739}.$ **2260** $\cong G_{802} \cong C_2 \times C_2 \times C_2$. Wreath recursion: $a = \sigma(a, a), b = (c, c), c = (a, a).$

Direct calculation.

2261. Wreath recursion: $a = \sigma(b, a), b = \sigma(c, c), c = (a, a).$

The element $(ac^{-1})^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(ac^{-1})^{-1}$. Hence, ac^{-1} and $c^{-1}a$ have infinite order.

Since $b^{-1}c^{-1}ac^{-1}ba\big|_{001} = \left((c^{-1}a)^2\right)^a$ and the vertex 001 is fixed under the action of $b^{-1}c^{-1}ac^{-1}ba$ we obtain that $b^{-1}c^{-1}ac^{-1}ba$ also has infinite order. Finally, $b^{-1}c^{-1}ac^{-1}ba$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2261} is not contracting.

We have $acac^{-1}a^{-2}cac^{-1}aca^{-2}c^{-1}=1$, and a and c do not commute, hence the group is not free.

2262 \cong $G_{848} \cong C_2 \wr \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(c, c), c = (a, a)$.

The states a and c form a 2-state automaton (see Theorem 7). Moreover, $c = a^{-2}$ and a has infinite order.

Thus $a = \sigma(a^{-2}, a)$, $b = \sigma(a^{-2}, a^{-2})$ and $G_{2262} = \langle a, b \rangle$. Further, $b^{-1}a = (1, a^3)$ and $a^{-3} = \sigma(1, a^3)$, yielding $a^{-4}b = \sigma$. Therefore $G = \langle a, \sigma \rangle$. Since $\langle a, a^{\sigma} \rangle = \mathbb{Z}^2$, we obtain that $G_{2262} \cong C_2 \wr Z^2 \cong G_{848}$.

2264 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(b, b)$, $b = \sigma(c, c)$, c = (a, a).

Direct calculation.

2265. Wreath recursion: $a = \sigma(c, b), b = \sigma(c, c), c = (a, a)$.

The element $(c^{-1}b)^4$ stabilizes the vertex 0000 and its section at this vertex is equal to $((c^{-1}b)^{-1})^{c^{-1}a}$. Hence, $c^{-1}b$ has infinite order. Since $[c,a]|_{10} = (c^{-1}b)^c$ and 10 is fixed under the action of [c,a] we obtain that [c,a] also has infinite order. Finally, [c,a] stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{2265} is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2271. Wreath recursion: $a = \sigma(c, a), b = \sigma(a, a), c = (b, a).$

The element $(ac^{-1})^4$ stabilizes the vertex 001 and its section at this vertex is equal to ac^{-1} . Hence, ac^{-1} has infinite order.

The element $(a^{-1}b)^4$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1}b$. Hence, $a^{-1}b$ has infinite order. Since $b^{-1}c^{-1}ac^{-1}a^2|_{001} = (a^{-1}b)^a$ and the vertex 001 is fixed under the action of $b^{-1}c^{-1}ac^{-1}a^2$ we obtain that $b^{-1}c^{-1}ac^{-1}a^2$ also has infinite order. Finally, $b^{-1}c^{-1}ac^{-1}a^2$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2271} is not contracting.

We have $a^{-2}bab^{-2}ab=1$, and a and b do not commute, hence the group is not free.

2274. Wreath recursion: $a = \sigma(c, b), b = \sigma(a, a), c = (b, a)$.

The element $a^{-1}c = \sigma(1,c^{-1}a)$ is conjugate to the adding machine and has infinite order. Since $(b^{-1}a)|_0 = a^{-1}c$ and 0 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2274} is not contracting.

We have $bc^{-2}b=(1,ab^{-2}a),b^2c^{-2}=(a^2b^{-2},1),$ hence by Lemma 4 the group is not free.

2277 \cong $C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a = \sigma(c, c), b = \sigma(a, a), c = (b, a)$.

All generators have order 2. Let x=cb, y=ab and $H=\langle x,y\rangle$. We have $x=\sigma(1,y^{-1})$ and $y=(xy^{-1},xy^{-1})$. The elements x and y commute and the matrix of the associated virtual endomorphism is given by

$$A = \begin{pmatrix} 0 & 1 \\ -1/2 & -1 \end{pmatrix}.$$

The eigenvalues $-\frac{1}{2} \pm \frac{1}{2}i$ are not algebraic integers, and therefore, according to [NS04], H is free abelian of rank 2.

The subgroup H is normal of index 2 in G_{2277} . Therefore $G_{2277} = \langle H, b \rangle = C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$, where G_2 is generated by b, which acts on H is inversion of the generators.

2280. Wreath recursion: $a = \sigma(c, a), b = \sigma(b, a), c = (b, a).$

We prove that a has infinite order by considering the forward orbit of 10^{∞} under the action of a^2 . We have

$$a^2 = (ac, ca),$$
 $ac = \sigma(cb, a^2),$ $ca = \sigma(ac, ba)$
 $cb = \sigma(ab, ba),$ $ba = (ac, ba),$ $ab = (ab, ca).$

The equalities

$$a^2(10^{\infty}) = ab(10^{\infty}) = 1110^{\infty},$$

 $ac(10^{\infty}) = ca(10^{\infty}) = cb(10^{\infty}) = 0010^{\infty},$ and $ba(10^{\infty}) = 10110^{\infty}$

show that all members of the forward orbit of 10^{∞} under the action of a^2 have only finitely many 1's and that the position of the rightmost 1 cannot decrease under the action of a^2 . Since $a^2(10^{\infty}) = 1110^{\infty}$, the forward orbit of 10^{∞} under the action of a^2 can never return to 10^{∞} and a^2 has infinite order.

Since $a^2 = (ac, ca)$, the elements ca and ab = (ab, ca) have infinite order, showing that G_{2280} is not contracting.

2283. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, a), c = (b, a).$

144

By Lemma 2 the element ac acts transitively on the levels of the tree and, hence, has infinite order. Since $ba = (ac, b^2)$ we obtain that ba also has infinite order. Finally, ba stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2283} is not contracting.

2284. Wreath recursion: $a = \sigma(a, c), b = \sigma(b, a), c = (b, a).$

Define $u = b^{-1}a$, $v = a^{-1}c$ and $w = c^{-1}b$. Then u = (u, v), $v = \sigma(w, 1)$ and $w = \sigma(u^{-1}, u)$. The group $\langle u, v, w \rangle$ is generated by the automaton symmetric to the one generating the subgroup $\langle x, y, z \rangle$ of G_{960} (see G_{960} for the definition). It is shown above that zxy has infinite order. Therefore wvu also has infinite order.

The element $(b^{-1}ac^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(b^{-1}ac^{-1}a)^{a^{-1}b}$. Hence, $b^{-1}ac^{-1}a$ has infinite order. Let $t = b^{-1}ab^{-2}a^2$. Since $t|_{110} = b^{-1}ac^{-1}a$ and the vertex 110 is fixed under the action of t we see that t also has infinite order. Finally, t stabilizes the vertex 11101000 and has itself as a section at this vertex. Therefore G_{2284} is not contracting.

2285. Wreath recursion: $a = \sigma(b, c), b = \sigma(b, a), c = (b, a).$

The element $ac^{-1} = \sigma(1, ca^{-1})$ is conjugate to the adding machine and has infinite order.

By Lemma 2 the element abcb acts transitively on the levels of the tree and, hence, has infinite order. Since $(ba)^2|_{000} = (ac, b^2)$ and the vertex 000 is fixed under the action of $(ba)^2$ we obtain that ba also has infinite order. Finally, ba stabilizes the vertex 01 and has itself as a section at this vertex. Therefore G_{2285} is not contracting.

2286. Wreath recursion: $a = \sigma(c, c), b = \sigma(b, a), c = (b, a).$

The element $(c^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(c^{-1}a)^{a^{-1}b}$. Hence, $c^{-1}a$ has infinite order. Since $(c^{-2}a^2)|_{000} = (c^{-1}a)^{b^{-1}}$ and 000 is fixed under the action of $c^{-2}a^2$ we obtain that $c^{-2}a^2$ also has infinite order. Finally, $c^{-2}a^2$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2286} is not contracting.

2287. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, a), c = (b, a).$

The element $bc^{-1} = \sigma(cb^{-1}, 1)$ is conjugate to the adding machine and has infinite order.

Conjugating the generators by g=(g,ag), we obtain the wreath recursion

$$a' = \sigma,$$
 $b' = \sigma(a'c', 1),$ $c' = (b', a'),$

where $a' = a^g$, $b' = b^g$, and $c' = c^g$. Therefore

$$a' = \sigma,$$
 $b' = \sigma(a'c', 1),$ $a'c' = \sigma(b', a')$

A direct computation shows that the iterated monodromy group of $\frac{z^2+2}{1-z^2}$ is generated by

$$\alpha = \sigma, \qquad \beta = \sigma(\gamma^{-1}\beta^{-1}, \alpha), \qquad \gamma = (\beta\gamma\beta^{-1}, \alpha),$$

where α , β , and γ are loops around the post-critical points 2, -1 and -2, respectively (recall the definition of iterated monodromy group in Section 5). We see that

$$\alpha = \sigma, \qquad \beta \gamma = \sigma(\beta^{-1}, 1), \qquad \beta = \sigma(\gamma^{-1}\beta^{-1}, \alpha)$$

satisfy the same recursions as a, b and ac, only composed with taking inverses. If we take second iteration of the wreath recursions, we obtain isomorphic self-similar groups.

It follows that the group G_{2287} is isomorphic to $IMG\left(\frac{z^2+2}{1-z^2}\right)$ and the limit space is homeomorphic to the Julia set of this rational function.

2293. Wreath recursion: $a = \sigma(a, c), b = \sigma(c, a), c = (b, a).$

The element $(b^{-1}c)^2$ stabilizes the vertex 0 and its section at this vertex is equal to $(b^{-1}c)^{-1}$. Hence, $b^{-1}c$ has infinite order. Since $(c^{-1}bc^{-1}a)^2\big|_{000} = b^{-1}c$ and 000 is fixed under the action of $(c^{-1}bc^{-1}a)^2$ we obtain that $c^{-1}bc^{-1}a$ also has infinite order. Finally, $c^{-1}bc^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2293} is not contracting.

We have $b^{-1}c^2a^{-1} = (1, c^{-1}b^2c^{-1}), c^2a^{-1}b^{-1} = (b^2c^{-2}, 1)$, hence by Lemma 4 the group is not free.

2294. Baumslag-Solitar group BS(1, -3). Wreath recursion: $a = \sigma(b, c)$, $b = \sigma(c, a)$, c = (b, a).

The automaton satisfies the conditions of Lemma 1. Therefore cb has infinite order. Since $a^2 = (cb, bc)$, c = (b, a) and $ba = (ab, c^2)$, the elements a, c and ba have infinite order. Finally, ba fixes the vertex 01 and has itself as a section at this vertex, showing that G_{2294} is not contracting.

Let $\mu = ca^{-1}$. We have $\mu = ca^{-1} = \sigma(ac^{-1}, 1) = \sigma(\mu^{-1}, 1)$, and therefore μ is conjugate of the adding machine and has infinite order. Further, we have $bc^{-1} = \sigma(cb^{-1}, 1) = \sigma((bc^{-1})^{-1}, 1)$, showing that $bc^{-1} = \mu = ca^{-1}$. Therefore $G_{2294} = \langle \mu, a \rangle$.

It can be shown that $a\mu a^{-1} = \mu^{-3}$ in G_{2294} (compare to G_{870} . Since both a and μ have infinite order $G_{2294} \cong BS(1, -3)$.

2295. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, a), c = (b, a)$.

The element $cb^{-1} = \sigma(1, bc^{-1})$ is conjugate to the adding machine and has infinite order. Hence, its conjugate $a^{-1}cb^{-1}a$ also has infinite order. Since $c^{-1}ac^{-1}b = (c^{-1}ac^{-1}b, a^{-1}cb^{-1}a)$, the element $c^{-1}ac^{-1}b$ has infinite order and G_{2295} is not contracting.

146

We have $a^{-2}bab^{-2}ab=1$, and a and b do not commute, hence the group is not free.

2307. Contains G_{933} . Wreath recursion: $a = \sigma(c, a), b = \sigma(b, b), c = (b, a)$.

We have ba = (bc, ba), and $bc = \sigma(1, ba)$. Therefore G_{933} is a subgroup of G_{2307} (the wreath recursion for ba and bc defines an automaton that is symmetric to the one defining the automaton [993]).

The element $(a^{-1}b)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $a^{-1}b$. Hence, $a^{-1}b$ has infinite order. Furthermore, $a^{-1}b$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2307} is not contracting.

2313 $\cong G_{2277} \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a = \sigma(c, c), b = \sigma(b, b), c = (b, a)$.

Since all generators have order 2 the subgroup $H = \langle ba, bc \rangle$ is normal in G_{2313} . Furthermore, $ba = \sigma(bc, bc)$ and $bc = \sigma(1, ba)$. Hence, $H = G_{771} \cong \mathbb{Z}^2$.

Finally, $G_{2313} = \langle H, b \rangle = \langle b \rangle \ltimes H = C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$, where b inverts the generators of H. This action coincides with the one for G_{2277} , which proves that these groups are isomorphic.

2320 \cong G_{2294} . Baumslag-Solitar group BS(1, -3). Wreath recursion: $a = \sigma(a, c), b = \sigma(c, b), c = (b, a)$.

It is proved in [BŠ06] that the automaton [2320] generates BS(1, -3). **2322**. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, b), c = (b, a)$.

The element $(a^{-1}c)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(a^{-1}c)^{b^{-1}}$. Hence, $a^{-1}c$ has infinite order. Since $(c^{-2}a^2)^2\big|_{000} = a^{-1}c$ and 000 is fixed under the action of $c^{-2}a^2$ we obtain that $c^{-2}a^2$ also has infinite order. Finally, $c^{-2}a^2$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2322} is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2352 $\cong G_{740}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(a, a), c = (c, a)$.

We have $ac^{-1}b = (a, a)$. Therefore $G_{2352} = \langle a, ac^{-1}b, c \rangle = G_{740}$.

2355. Wreath recursion: $a = \sigma(c, b), b = \sigma(a, a), c = (c, a)$.

The element $(b^{-1}a)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $(b^{-1}a)^{a^{-1}c}$. Hence, $b^{-1}a$ has infinite order. Furthermore, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2355} is not contracting.

We have $a^{-1}cb^{-1}c = (b^{-1}c, 1), cb^{-1}ca^{-1} = (1, cb^{-1}),$ hence by Lemma 4 the group is not free.

2358 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(c, c), b = \sigma(a, a), c = (c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b = aca.

2361. Wreath recursion: $a = \sigma(c, a), b = \sigma(b, a), c = (c, a)$.

The element $bc^{-1} = \sigma(bc^{-1}, 1)$ is conjugate to the adding machine and has infinite order.

2364. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, a), c = (c, a).$

The element $cb^{-1} = \sigma(1, cb^{-1})$ is the adding machine and has infinite order. Therefore its conjugate $b^{-1}c$ also has infinite order. Since $(b^{-1}a)|_0 = b^{-1}c$ and 0 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2364} is not contracting.

We have $c^{-1}ac^{-1}b = (1, a^{-1}bc^{-1}b), bc^{-1}ac^{-1} = (ba^{-1}bc^{-1}, 1)$, hence by Lemma 4 the group is not free.

2365. Wreath recursion: $a = \sigma(a, c), b = \sigma(b, a), c = (c, a)$.

By Lemma 2 the element cb acts transitively on the levels of the tree and, hence, has infinite order.

2366. Wreath recursion: $a = \sigma(b, c), b = \sigma(b, a), c = (c, a).$

By Lemma 2 the element a acts transitively on the levels of the tree and, hence, has infinite order. Since c = (c, a) we obtain that c also has infinite order and G_{2366} is not contracting.

We have $a^{-2}bab^{-2}ab=1$, and a and b do not commute, hence the group is not free.

2367. Wreath recursion: $a = \sigma(c, c), b = \sigma(b, a), c = (c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7).

Also we have $bc = \sigma(bc, 1)$ and $ca = \sigma(ac, 1)$. Therefore the elements bc and ca generate the Brunner-Sidki-Vierra group (see [BSV99]).

2368 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, a), c = (c, a)$.

We have $bc^{-1}a = (a, a)$. Therefore $G_{2368} = \langle a, c, bc^{-1}a \rangle = G_{739}$.

2369. Wreath recursion: $a = \sigma(b, a), b = \sigma(c, a), c = (c, a)$.

By using the approach already used for G_{875} , we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since $a^2 = (ab, ba)$, the element ab also has infinite order. Furthermore, ab fixes 00 and has itself as a section at this vertex. Therefore G_{2369} is not contracting.

2371. Wreath recursion: $a = \sigma(a, b), b = \sigma(c, a), c = (c, a)$.

The element $(c^{-1}ab^{-1}a)^2$ stabilizes the vertex 01 and its section at this vertex is equal to $c^{-1}ab^{-1}a$, which is nontrivial. Hence, $c^{-1}ab^{-1}a$ has infinite order.

Let $t = b^{-1}c^{-1}a^2c^{-1}ba^{-1}ca^{-1}ca^{-2}cbc^{-1}ab^{-1}a$. Then t^2 stabilizes the vertex 00 and $t^2\big|_{00} = t^{a^{-1}ba^{-1}c}$. Hence, t has infinite order. Let $s = b^{-1}c^{-2}a^3$ Since $s^8\big|_{00100001} = t$ and s fixes the vertex 00100001 we see that s also has infinite order. Finally, s stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2371} is not contracting.

2372. Wreath recursion: $a = \sigma(b, b), b = \sigma(c, a), c = (c, a).$

By Lemma 2 the elements b and ac act transitively on the levels of the tree and, hence, have infinite order. Since $(c^2)\big|_{100} = ac$ and the vertex 100 is fixed under the action of c^2 we obtain that c also has infinite order. Finally, c stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{2372} is not contracting.

2374 $\cong G_{821}$. Lamplighter group $\mathbb{Z} \wr C_2$. Wreath recursion: $a = \sigma(a, c)$, $b = \sigma(c, a)$, c = (c, a).

The states a and c form a 2-state automaton that generates the Lamplighter group (see Theorem 7). Since $bc^{-1} = \sigma = c^{-1}a$, we have $b = a^c$ and $G = \langle a, c \rangle$.

2375. Wreath recursion: $a = \sigma(b, c), b = \sigma(c, a), c = (c, a)$.

The element $(a^{-1}c)^2$ stabilizes the vertex 01 and its section at this vertex is equal to $a^{-1}c$. Hence, $a^{-1}c$ and $c^{-1}a$ have infinite order. Since $c^{-1}b^{-1}ac^{-1}a^2|_{00} = c^{-1}a$ and the vertex 00 is fixed under the action of $c^{-1}b^{-1}ac^{-1}a^2$ we obtain that $c^{-1}b^{-1}ac^{-1}a^2$ also has infinite order. Finally, $c^{-1}b^{-1}ac^{-1}a^2$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2375} is not contracting.

2376 $\cong G_{739} \cong C_2 \ltimes (C_2 \wr \mathbb{Z})$. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, a), c = (c, a)$.

Since $\sigma = bc^{-1}$, we have $G_{2376} = \langle a, c, \sigma \rangle$. We already proved that $G_{972} = \langle a, c, \sigma \rangle$. Therefore $G_{2376} = G_{972} \cong G_{739}$.

2388 $\cong G_{821}$. Lamplighter group $\mathbb{Z} \wr C_2$. Wreath recursion: $a = \sigma(c, a)$, $b = \sigma(b, b)$, c = (c, a).

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7) and $b = \sigma = ac^{-1}$.

2391. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, b), c = (c, a)$.

The element $(c^{-1}ba^{-1}b)^2$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1}ba^{-1}b$. Hence, $c^{-1}ba^{-1}b$ has infinite order. Since $(bc^{-2}b)^2|_{000} = c^{-1}ba^{-1}b$ and 000 is fixed under the action of $bc^{-2}b$ we obtain that $bc^{-2}b$ also has infinite order. Finally, $bc^{-2}b$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2391} is not contracting.

2394 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(c,c), b = \sigma(b,b), c = (c,a)$.

All generators have order 2, hence $H = \langle ba, bc \rangle$ is normal in G_{2394} . Furthermore, ba = (bc, bc), $bc = \sigma(bc, ba)$, and therefore $H = G_{731} \cong \mathbb{Z}$.

Thus $G_{2394} = \langle b \rangle \ltimes H \cong C_2 \ltimes \mathbb{Z} \cong D_{\infty}$ since $(bc)^b = (bc)^{-1}$. **2395**. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, b), c = (c, a)$.

By Lemma 2 the element ca acts transitively on the levels of the tree.

The element $(c^{-1}a)^2$ stabilizes the vertex 0 and its section at this vertex is equal to $c^{-1}a$. Hence, $c^{-1}a$ has infinite order. Since $(b^{-1}a)|_0 = c^{-1}a$ and 0 is fixed under the action of $b^{-1}a$ we obtain that $b^{-1}a$ also has infinite order. Finally, $b^{-1}a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2395} is not contracting.

Note that $ab = (ac, ab), ac = \sigma(ac, 1)$ and $ba = (ba, ca), ca = \sigma(1, ca)$, i.e., G_{2395} contains copies of G_{929} .

2396. Boltenkov group. Wreath recursion: $a = \sigma(b, a), b = \sigma(c, b), c = (c, a).$

This group was studied by A. Boltenkov (under direction of R. Grigorchuk), who showed that the monoid generated by $\{a, b, c\}$ is free, and the group G_{2396} is torsion free.

Proposition 2. The monoid generated by a, b, and c is free.

Proof. By way of contradiction, assume that there are some relations and let w = u be a relation for which $\max(|w|, |u|)$ minimal.

We first consider the case when neither w nor u is empty. Because of cancelation laws, the words w and u must end in different letters. We have $w = \sigma_w(w_0, w_1) = \sigma_u(u_0, u_1) = u$, where σ_w , and σ_u are permutations in $\{1, \sigma\}$. Clearly, $w_0 = u_0$ and $w_1 = u_1$ must also be relations.

Assume that w ends in b and u ends in c. Then w_0 and u_0 both end in c. Therefore, by minimality, $w_0 = u_0$ as words and |u| = |w|. Since $b \neq c$ in G_{2396} the length of w and u is at least 2. We can recover the second to last letter in w and u. Indeed, the second to last letter in u_0 can be only b or c (these are the possible sections at 0 of the three generators), while the second to last letter of w_0 can be only a or b (these are the possible sections at 1 of the three generators). Therefore $w_0 = u_0 = \ldots bc$, $w = \ldots bb$, and $u = \ldots ac$. Since $bb \neq ac$ in G_{2396} (look at the action at level 1), the length of w and u must be at least 3. Continuing in the same fashion we obtain that $w_0 = u_0 = b \ldots bbc$, $w = \ldots ababb$, and $u = \ldots babac$. Since the lengths of w and u are equal, they have different action on level 1, which is a contradiction.

Assume that w ends in a and u ends in b or c. Then u_0 and w_0 end in b and c, respectively, and we may proceed as before.

It remains to show that, say, u cannot be empty word. If this is the case then $w_0 = 1 = w_1$, implying that $w_0 = w_1$ is also a minimal relation. But this is impossible since both w_0 and w_1 are nonempty.

For a group word w over $\{a,b,c\}$, define the exponent $\exp_a(w)$ of

a in w as the sum of the exponents in all occurrences of a and a^{-1} in w. Define $\exp_b(w)$ and $\exp_c(w)$ in analogous way and let $\exp(w) = \exp_a(w) + \exp_b(w) + \exp_c(w)$.

Lemma 5. If w = 1 in G_{2396} then $\exp(w) = 0$.

Proof. By way of contradiction, assume otherwise and choose a freely reduced group word w over $\{a,b,c\}$ such that w=1 in G_{2396} , $\exp(w) \neq 0$, and w has minimal length among such words. If $w=(w_0,w_1)$, w_0 and w_1 also represent 1 in G_{2396} and $\exp(w_0)=\exp(w_1)=\exp(w)\neq 0$. Since the exponents is nonzero, the words w_0 and w_1 are nonempty and, by minimality, their length must be equal to |w|. Note that $ac^{-1}=\sigma(bc^{-1},1)$ and $bc^{-1}=\sigma(1,ba^{-1})$. This implies that w cannot ac^{-1} , bc^{-1} , ca^{-1} , or cb^{-1} as a subword (otherwise the length of w_0 or w_1 would be shorter than the length of w). By the same reason, w_0 and w_1 cannot have the above 4 words as subwords, which implies that w does not have $ab^{-1}=(ab^{-1},bc^{-1})$ or its inverse ba^{-1} as a subword. Therefore w has the form $w=W_1(a^{-1},b^{-1},c^{-1})W_2(a,b,c)$, and since w=1 in G_{2396} , we obtain a relation between positive words over $\{a,b,c\}$, which contradicts Proposition 2.

Lemma 6. If w = 1 in G_{2396} then $\exp_a(w)$, $\exp_b(w)$ and $\exp_c(w)$ are

Proof. Indeed, $\exp_a(w) + \exp_b(w)$ must be even (since both a and b are active at the root). By Lemma 5, $\exp_c(w)$ must be even. If $w = (w_0, w_1)$, then $\exp_a(w_0) + \exp_b(w_0)$ and $\exp_a(w_1) + \exp_b(w_1)$ must be even. Since $\exp_a(w) + \exp_b(w) = \exp_b(w_0) + \exp_b(w_1)$, $\exp_a(w) + \exp_c(w) = \exp_a(w_0) + \exp_a(w_1)$ we obtain that $2 \exp_a(w) + \exp_b(w) + \exp_c(w)$ is even, which then implies that $\exp_b(w)$ is even. Finally, since both $\exp_b(w)$ and $\exp_c(w)$ are even, $\exp_a(w)$ must be even as well (by Lemma 5).

Proposition 3. The group G_{2396} is torsion free.

Proof. By way of contradiction, assume otherwise. Let w be an element of order 2. We may assume that w does not belong to the stabilizer of the first level (otherwise we may pass to a section of w). Let $w = \sigma(w_0, w_1)$. Since $w^2 = (w_1 w_0, w_0 w_1) = 1$, we have the modulo 2 equalities $\exp_b(w_0 w_1) = \exp_b(w_0) + \exp_b(w_1) = \exp_a(w) + \exp_b(w)$. Since $\exp_b(w_0 w_1)$ is even, $\exp_a(w) + \exp_b(w)$ must be even, implying that w stabilizes level 1, a contradiction.

Since $b^{-1}a = (c^{-1}b, b^{-1}a)$, the group G_{2396} is not contracting (our considerations above show that $b^{-1}a$ is not trivial and therefore has infinite order).

We have $c^{-1}bc^{-1}a = (1, a^{-1}bc^{-1}b), ac^{-1}bc^{-1} = (ba^{-1}bc^{-1}, 1), hence$ by Lemma 4 the group is not free.

2398. Dahmani group. Wreath recursion: $a = \sigma(a, b), b = \sigma(c, b),$ c = (c, a).

This group is self-replicating, not contracting, weakly regular branch group over its commutator subgroup. It was studied by Dahmani in |Dah05|.

2399. Wreath recursion: $a = \sigma(b, b), b = \sigma(c, b), c = (c, a).$

By Lemma 2 the elements ca and $c^4bc^2b^2c^2b^2c^3acba^2$ act transitively on the levels of the tree and, hence, have infinite order. Since $(cba)^8\big|_{000010001}=c^4bc^2bc^2b^2cb^2cb^3acba^2$ and vertex 000010001 is fixed under the action of $(cba)^8$ we obtain that cba also has infinite order. Finally, cba stabilizes the vertex 01001 and has itself as a section at this vertex. Therefore G_{2399} is not contracting.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2401. Wreath recursion: $a = \sigma(a, c), b = \sigma(c, b)$ and c = (c, a).

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{2401} is neither torsion, nor contracting and has exponential growth.

2402. Wreath recursion: $a = \sigma(b, c), b = \sigma(c, b), c = (c, a).$

The element $(bc^{-1})^2$ stabilizes the vertex 00 and its section at this vertex is equal to bc^{-1} . Hence, bc^{-1} has infinite order.

We have $c^{-2}ba = (1, a^{-2}b^2)$, $ac^{-2}b = (ba^{-2}b, 1)$, hence by Lemma 4 the group is not free.

2403 \cong G_{2287} . Wreath recursion: $a = \sigma(c, c), b = \sigma(c, b), c = (c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7).

Also we have $bc = \sigma(1, ba)$ and ba = (bc, 1). Therefore the elements bc and ba generate the Basilica group G_{852} .

By conjugating by g = (cg, g), we obtain

$$a' = \sigma,$$
 $b' = \sigma(1, c'b'),$ $c' = (c', a'),$

where $a' = a^g$, $b' = b^g$, and $c' = c^g$. Therefore

$$a' = \sigma,$$
 $b' = \sigma(1, c'b'),$ $c'b' = \sigma(a', b'),$

and G_{2402} is isomorphic to G_{2287} , i.e., to $IMG(\frac{z^2+2}{1-z^2})$. **2422** $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, c), c =$

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b = aca.

2423. Wreath recursion: $a = \sigma(b, a), b = \sigma(c, c), c = (c, a)$.

Contains elements of infinite order by Lemma 1. In particular, ac has infinite order. Since $c^2|_{100} = ac$ and the vertex 100 is fixed under the action of c^2 we obtain that c also has infinite order. Since c = (c, a) the group is not contracting.

We have $c^{-1}bc^{-1}a = (1, a^{-1}b)$, $ac^{-1}bc^{-1} = (ba^{-1}, 1)$, hence by Lemma 4 the group is not free.

2424 \cong G_{966} . Wreath recursion $a = \sigma(c, a), b = \sigma(c, c), c = (c, a)$.

We have $ac^{-1}b = (c, c)$. Therefore $G_{2424} = \langle a, ac^{-1}b, c \rangle = G_{966}$.

2426 $\cong G_{2277} \cong C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a = \sigma(b, b), b = \sigma(c, c), c = (c, a)$.

Since all generators have order 2 the subgroup $H = \langle ab, cb \rangle$ is normal in G_{2426} . Furthermore, ab = (bc, bc), $cb = \sigma(ac, 1) = \sigma(ab(cb)^{-1}, 1)$, so H is self-similar. Since acb = bca in G_{2426} we obtain $ab \cdot cb = abcaab = aacbab = cb \cdot ab$, hence, H is an abelian self-similar 2-generated group.

Consider the $\frac{1}{2}$ -endomorphism $\phi : \operatorname{Stab}_{H}(1) \to H$, given by $\phi(g) = h$, provided g = (h, *) and consider the linear map $A : \mathbb{C}^{2} \to \mathbb{C}^{2}$ induced by ϕ . It has the following matrix representation with respect to the basis corresponding to the generating set $\{ab, cb\}$:

$$A = \left(\begin{array}{cc} 0 & \frac{1}{2} \\ -1 & -\frac{1}{2} \end{array} \right).$$

Its eigenvalues are not algebraic integers and, therefore, by [NS04], H is a free abelian group of rank 2.

Finally, $G_{2426} = \langle H, b \rangle = \langle b \rangle \ltimes H = C_2 \ltimes (\mathbb{Z} \times \mathbb{Z})$, where b inverts the generators of H. This action coincides with the one for G_{2277} , which proves that these groups are isomorphic.

2427. The element $(bc^{-1})^4$ stabilizes the vertex 000 and its section at this vertex is equal to bc^{-1} . Hence, bc^{-1} has infinite order.

We have $a^{-2}bab^{-2}ab = 1$, and a and b do not commute, hence the group is not free.

2838 \cong $G_{848} \cong C_2 \wr \mathbb{Z}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(a, a), c = (c, c)$.

Since c is trivial, we have $G = \langle a, ba^{-1} \rangle$, where $a = \sigma(1, a)$ is the adding machine and $ba^{-1} = (1, a)$. Therefore $G_{2838} = G_{848}$.

2841. Wreath recursion: $a = \sigma(c, b), b = \sigma(a, a), c = (c, c)$.

The element c is trivial. Since $a^2 = (b, b)$, $b^2 = (a^2, a^2)$ and a^2 is nontrivial, the elements a and b have infinite order. Also we have ba = (a, ab) and ab = (ba, a), hence ba has infinite order and G_{2841} is not contracting.

We claim that the monoid generated by a and b is free. Hence, G_{2841} has exponential growth.

Proof. We can first prove (analogous to G_{2851}) that $w \neq 1$ for any nonempty word $w \in \{a, b\}^*$.

By way of contradiction, let w and v be two nonempty words in $\{a, b\}^*$ with minimal |w| + |v| such that w = v in G_{2841} . Assume that w ends with a and v ends with b. Consider the following cases.

- 1. If w = a then $v|_0 = 1$ in G_{2841} and $v|_0$ is nontrivial word.
- 2. If w ends with a^2 then $w|_1=v|_1$ in G_{2841} , $\left|w|_1\right|+\left|v|_1\right|<\left|w\right|+\left|v\right|$ and $w|_1$ ends with $b,\,v|_1$ with a.
- 3. If w ends with ba and v ends with ab, then $w|_1 = v|_1$ in G_{2841} , $|w|_1| + |v|_1| < |w| + |v|$ (because $|v|_1| < |v|$) and $w|_1$ ends with b, $v|_1$ with a.
- 4. If w ends with ba and v ends with b, then $w|_1 = v|_1$ in G_{2841} , $|w|_1|+|v|_1| \leq |w|+|v|$ and $w|_1$ ends with ab, $|v_1|$ with a. Therefore, words $v|_1$ and $w|_1$ satisfy one of the first three cases.

In all cases we obtain either a shorter relation, which contradicts to our assumption, or a relation of the form v = 1, which is also impossible. \square

There are non-trivial group relations, e.g. $a^{-1}b^{-1}a^{-2}ba^{-1}b^{-1}aba^2b^{-1}ab=1$, while a and b do not commute, hence the group is not free.

2284 $\cong G_{730}$. Klein Group $C_2 \times C_2$.

Direct calculation.

2847 $\cong G_{929}$. Wreath recursion: $a = \sigma(c, a), b = \sigma(b, a), c = (c, c)$.

Since c is trivial, the generator $a = \sigma(1, a)$ is the adding machine and $b = \sigma(b, a)$. We have ab = (ab, a). Therefore $G_{2847} = \langle a, ab \rangle = G_{929}$.

2850. Wreath recursion: $a = \sigma(c, b), b = \sigma(b, a), c = (c, c).$

Since c is trivial, we have $a^2=(b,b)$, $b^2=(ab,ba)$, $ab=(b^2,a)$ and $ba=(a,b^2)$. Therefore the elements a, b, ab and ba have infinite order. Since ba fixes the vertex 11 and has itself as a section at that vertex, G_{2850} is not contracting.

The group is regular weakly branch over G'_{2850} , since it is self-replicating and $[b, a^2] = (1, [a, b])$.

Semigroup $\langle a,b \rangle$ is free. Hence, G_{2850} has exponential growth.

Proof. We can first prove (analogous G_{2851}) that $w \neq 1$ for any nonempty word $w \in \{a, b\}^*$.

By way of contradiction, let w and v be two nonempty words in $\{a, b\}^*$ with minimal |w| + |v| such that w = v in G_{2850} . Assume that w ends with a and v ends with b. Consider the following cases.

- 1. If w = a then $v|_0 = 1$ in G and $v|_0$ is nontrivial word.
- 2. If w ends with a^2 then $w|_1 = v|_1$ in G, $|w|_1 + |v|_1 < |w| + |v|$ and $w|_1$ ends with b, $v|_1$ with a.
- 3. If w ends with ba then $w|_0 = v|_0$ in G, $|w|_0| + |v|_0| < |w| + |v|$ and $w|_0$ ends with a, $v|_0$ with b.

In all cases we obtain either a shorter relation, which contradicts to our assumption, or a relation of the form v = 1, which is also impossible. \square

Since $a^{-4}bab^{-1}a^2b^{-1}ab=1$ and a and b do not commute, the group is not free.

2851 \cong G_{929} . Wreath recursion: $a = \sigma(a, c), b = \sigma(b, a), c = (c, c)$.

The automorphism c is trivial. Therefore $a = \sigma(a, 1)$ is the inverse of the adding machine. Since $ba^{-1} = (a, ba^{-1})$, the order of ba^{-1} is infinite and G_{2851} is not contracting.

Since G_{2851} is self-replicating and $[a^2, b] = ([a, b], 1)$, the group is a regular weakly branch group over its commutator.

The monoid $\langle a, b \rangle$ is free.

Proof. By way of contradiction, assume that w be a nonempty word over $\{a,b\}$ such that w=1 in G_{2851} and w has the smallest length among all such words. The word w must contain both a and b (since they have infinite order). Therefore, one of the projections of w is be shorter than w, nonempty, and represents the identity in G_{2851} , a contradiction.

Assume now that w and v are two nonempty words over $\{a,b\}$ such that w=v in G_{2851} and they are chosen so that the sum |w|+|v| is minimal. Assume that w ends in a and v ends in b. Then

- if w ends in a^2 , then w_0 is a nonempty word that is shorter than w ending in a, while v_0 is a nonempty word of length no greater than |v| ending in b. Since $w_0 = v_0$ in G_{2851} , this contradicts the minimality assumption.
- if w ends in ba, then w_1 is a word that is shorter than w ending in b, while v_1 is a nonempty word of length no greater than |v| ending in a. Since $w_1 = v_1$ in G_{2851} , this contradicts the minimality assumption.
- if w = a then $v_1 = 1$ in G and v_1 is a nonempty word. Thus we obtain a relation $v_1 = 1$ in G_{2851} , a contradiction.

This shows that G has exponential growth, while the orbital Schreier graph $\Gamma(G,000...)$ has intermediate growth (see [BH05, BCSN]).

The groups G_{2851} and G_{929} coincide as subgroups of $\operatorname{Aut}(X^*)$. Indeed, $a^{-1} = \sigma(1, a^{-1})$ is the adding machine and $b^{-1}a = (b^{-1}a, a^{-1})$, showing that $G_{929} = \langle a^{-1}, b^{-1}a \rangle = G_{2851}$.

2852 \cong G_{849} . Wreath recursion: $a = \sigma(b, c), b = \sigma(b, a), c = (c, c)$.

The automorphism c is trivial. Therefore $a = \sigma(b, 1)$, $a^2 = (b, b)$ and ab = (b, ba), which implies that G_{2852} is self-replicating and level transitive.

The group G_{2852} is a regular weakly branch group over its commutator. This follows from $[a^{-1}, b] \cdot [b, a] = ([a, b], 1)$, together with the self-replicating property and the level transitivity. Moreover, the commutator is not trivial, since G_{2852} is not abelian (note that $[b, a] = (b^{-1}ab, a^{-1}) \neq 1$).

We have $b^2 = (ab, ba)$, ba = (ab, b), and ab = (b, ba). Therefore b^2 fixes the vertex 00 and has b as a section at this vertex. Therefore b has infinite order (since it is nontrivial), and so do ab and a (since $a^2 = (b, b)$). Since ab fixes the vertex 10 and has itself as a section at that vertex, G_{2852} is not contracting.

The monoid generated by a and b is free (and therefore the group has exponential growth).

Proof. By way of contradiction assume that w is a word of minimal length over all nonempty words over $\{a,b\}$ such that w=1 in G_{2851} . Then w must have occurrences of both a and b (since both have infinite order). This implies that one of the sections of w is shorter than w (since $a|_1$ is trivial), nonempty (since both $b|_0$ and $b|_1$ are nontrivial), and represents the identity in G_{2851} , a contradiction.

Assume now that there are two nonempty words $w, v \in \{a, b\}^*$ such that w = u in G_{2852} and choose such words with minimal sum |w| + |v|. Let $w = \sigma_w(w_0, w_1)$ and $u = \sigma_u(u_0, u_1)$, where $\sigma_w, \sigma_w \in \{1, \sigma\}$. Assume that w ends in a and v ends in b (they must end in different letters because of the cancelation property and the minimality of the choice). Then $w_1 = v_1$ in G_{2851} , the word v_1 is nonempty, $|v_1| \leq |v|$, and $|w_1| < |w|$. Thus we either obtain a contradiction with the minimality of the choice of w and v or we obtain a relation of the type $v_1 = 1$, also a contradiction.

See G_{849} for an isomorphism between G_{2852} and G_{849} .

If we conjugate the generators of G_{2852} by the automorphism $\mu = \sigma(b\mu, \mu)$, we obtain the wrath recursion

$$x = \sigma(y, 1), \qquad y = \sigma(xy, 1),$$

156

where $x = a^{\mu}$ and $y = b^{\mu}$. Further,

$$y = \sigma(xy, 1), \qquad xy = (xy, y),$$

and the last recursion defines the automaton 933. Therefore $G_{2852} \cong$

 G_{933} . **2853** $\cong IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$. Wreath recursion $a = \sigma(c,c), b = \sigma(b,a)$ and

The automorphism c is trivial and $a = \sigma$.

It is shown in [BN06] that $IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$ is generated by $\alpha = \sigma(1,\beta)$ and $\beta = (\alpha^{-1}\beta^{-1}, \alpha)$.

We have then $\beta \alpha = \sigma(\alpha, \alpha^{-1})$. If we conjugate by $\gamma = (\gamma, \alpha \gamma)$, we obtain the wreath recursion

$$A = \sigma, \qquad B = \sigma(B^{-1}, A)$$

where $A = (\beta \alpha)^{\gamma}$ and $B = \alpha^{\gamma}$. The group $\langle A, B \rangle$ is conjugate to G_{2853} by the element $\delta = (\delta_1, \delta_1)$, where $\delta_1 = \sigma(\delta, \delta)$ (this is the automorphism of the tree changing the letters on even positions).

Therefore $G_{2852} \cong IMG\left(\left(\frac{z-1}{z+1}\right)^2\right)$ and the limit space of G_{2852} is the Julia set of the rational map $z \mapsto \left(\frac{z-1}{z+1}\right)^2$.

Note that G_{2853} is contained in G_{775} as a subgroup of index 2. Therefore it is virtually torsion free (it contains the torsion free subgroup Hmentioned in the discussion of G_{775} as a subgroup of index 2) and is a

weakly branch group over H''. The diameters of the Schreier graphs on the levels grow as $\sqrt{2}^n$ and have polynomial growth of degree 2 (see [BN, Bon07]).

2854 $\cong G_{847} \cong D_4$. Wreath recursion: $a = \sigma(a, a), b = \sigma(c, a), c = (c, c)$. Direct calculation.

2860 $\cong G_{2212}$. Klein bottle group $\langle s, t \mid s^2 = t^2 \rangle$. Wreath recursion: $a = \sigma(a, c), b = \sigma(c, a), c = (c, c)$.

Note that c is trivial and therefore $a = \sigma(a, 1)$ and $b = \sigma(1, a)$. The element a has infinite order since a is inverse of the adding machine.

Let us prove that $G_{2860} \cong H = \langle s, t \mid s^2 = t^2 \rangle$. Indeed, the relation $a^2 = b^2$ is satisfied, so G_{2860} is a homomorphic image of H with respect to the homomorphism induced by $s \mapsto a$ and $t \mapsto b$. Each element of H can be written in the form $t^r(st)^l s^n$, $n \in \mathbb{Z}, l \geq 0, r \in \{0,1\}$. It suffices to prove that images of these words (except for the identity word, of course) represent nonidentity elements in G_{2860} .

We have $a^{2n} = (a^n, a^n), a^{2n+1} = \sigma(a^{n+1}, a^n), (ab)^l = (1, a^{2l}).$ We only need to check words of even length (those of odd length act nontrivially on level 1). We have $(ab)^{\ell}a^{2n}=(a^n,a^{n+2\ell})\neq 1$ in G if $n\neq 0$ or $\ell\neq 0$, since a has infinite order. On the other hand, $b(ab)^la^{2n+1}=(a^{n+1+2l+1},a^n)=1$ if and only if n=0 and l=-1, which is not the case, because l must be nonnegative. This finishes the proof.

2861 $\cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(b, c)$, $b = \sigma(c, a)$, c = (c, c). Since c is trivial, ba = (ab, 1), ab = (1, ba), which yields $a = b^{-1}$. Also $a^{2n} = (b^n, b^n)$, $b^{2n} = (a^n, a^n)$ and $a^{2n+1} \neq 1$, $b^{2n+1} \neq 1$. Thus a has infinite order and $G_{2861} \cong \mathbb{Z}$.

2862 \cong $G_{847} \cong D_4$. Wreath recursion: $a = \sigma(c, c), b = \sigma(c, a), c = (c, c)$.

Direct calculation.

2874 $\cong G_{820} \cong D_{\infty}$. Wreath recursion: $a = \sigma(a, c), b = \sigma(b, b), c = (c, c)$.

Since c is trivial, $G_{2874} = \langle b, ba \rangle$. Since ba = (ba, b), the elements b and ba form a 2-state automaton generating D_{∞} (see Theorem 7).

2880 \cong G_{730} . Klein Group $C_2 \times C_2$. Wreath recursion: $a = \sigma(c, c)$, $b = \sigma(b, b), c = (c, c)$.

Direct calculation.

2887 $\cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a = \sigma(a, c), b = \sigma(c, b), c = (c, c)$. Note that c is trivial, b is the adding machine and $a = b^{-1}$.

2889 \cong $G_{848} \cong C_2 \wr \mathbb{Z}$. Wreath recursion: $a = \sigma(c,c), b = \sigma(c,b), c = (c,c)$.

Note that c is trivial. Since b is the adding machine and ab=(1,b), we have $G_{2889}=\langle b,ab\rangle=G_{848}$.

References

- [Adi79] S. I. Adian. The Burnside problem and identities in groups, volume 95 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1979.
- [Ale72] S. V. Alešin. Finite automata and the Burnside problem for periodic groups. Mat. Zametki, 11:319–328, 1972.
- [Ale83] S. V. Aleshin. A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (4):12-14, 1983.
- [Bar03] Laurent Bartholdi. A Wilson group of non-uniformly exponential growth. C. R. Math. Acad. Sci. Paris, 336(7):549–554, 2003.
- [BCSN] Ievgen Bondarenko, Tullio Checcherini-Silberstein, and Volodymyr Nekrashevych. Amenable graphs with dense holonomy and no compact isometry groups. In preparation.
- [BG00a] L. Bartholdi and R. I. Grigorchuk. On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):5–45, 2000.

- [BG00b] Laurent Bartholdi and Rostislav I. Grigorchuk. Lie methods in growth of groups and groups of finite width. In Michael Atkinson et al., editor, Computational and Geometric Aspects of Modern Algebra, volume 275 of London Math. Soc. Lect. Note Ser., pages 1–27. Cambridge Univ. Press, Cambridge, 2000.
- [BGK⁺a] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić. Groups generated by 3-state automata over 2-letter alphabet, I. accepted in Sao Paolo Journal of Mathematical Sciences, http://xxx.arxiv.org/abs/0704.3876.
- [BGK+b] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić. Groups generated by 3-state automata over 2-letter alphabet, II. accepted in Journal of Mathematical Sciences (N.Y.), http://xxx.arxiv.org/abs/math/0612178.
- [BGŠ03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šunik. Branch groups. In *Handbook of algebra*, Vol. 3, pages 989–1112. North-Holland, Amsterdam, 2003.
- [BH05] Itai Benjamini and Christopher Hoffman. ω-periodic graphs. *Electron. J. Combin.*, 12:Research Paper 46, 12 pp. (electronic), 2005.
- [BKN] Laurent Bartholdi, Vadim Kaimanovich, and Volodymyr Nekrashevych. On amenability of automata groups. arXiv:0802.2837.
- [BN] Ievgen Bondarenko and Volodymyr Nekrashevych. Growth of Schreier graphs of groups generated by bounded automata. in preparation.
- [BN06] Laurent I. Bartholdi and Volodymyr V. Nekrashevych. Thurston equivalence of topological polynomials. *Acta Math.*, 197(1):1–51, 2006.
- [BN07] Laurent Bartholdi and Volodymyr Nekrashevych. Iterated monodromy groups of quadratic polynomials, I, 2007. acceted in Groups, Geometry, and Dynamics.
- [Bon07] Ievgen Bondarenko. Groups generated by bounded automata and their Schreier graphs. PhD dissertation, Texas A&M University, 2007.
- [BRS06] L. Bartholdi, I. I. Reznykov, and V. I. Sushchansky. The smallest Mealy automaton of intermediate growth. J. Algebra, 295(2):387–414, 2006.
- [BŠ06] Laurent I. Bartholdi and Zoran Šunik. Some solvable automaton groups. In Topological and Asymptotic Aspects of Group Theory, volume 394 of Contemp. Math., pages 11–29. Amer. Math. Soc., Providence, RI, 2006.
- [BSV99] A. M. Brunner, Said Sidki, and Ana Cristina Vieira. A just nonsolvable torsion-free group defined on the binary tree. J. Algebra, 211(1):99–114, 1999.
- [BV05] Laurent Bartholdi and Bálint Virág. Amenability via random walks. Duke Math. J., 130(1):39–56, 2005.
- [CM82] Bruce Chandler and Wilhelm Magnus. The history of combinatorial group theory, volume 9 of Studies in the History of Mathematics and Physical Sciences. Springer-Verlag, New York, 1982.
- [Dah05] François Dahmani. An example of non-contracting weakly branch automaton group. In *Geometric methods in group theory*, volume 372 of *Contemp. Math.*, pages 219–224. Amer. Math. Soc., Providence, RI, 2005.
- [Day57] Mahlon M. Day. Amenable semigroups. Illinois J. Math., 1:509–544, 1957.

- [Eil76] Samuel Eilenberg. Automata, languages, and machines. Vol. B. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
- [EP84] M. Edjvet and Stephen J. Pride. The concept of "largeness" in group theory.
 II. In Groups—Korea 1983 (Kyoungju, 1983), volume 1098 of Lecture Notes in Math., pages 29–54. Springer, Berlin, 1984.
- [GL02] Rostislav Grigorchuk and Igor Lysionok. Burnside problem. In Alexander V. Mikhalev and Günter F. Pilz, editors, The concise handbook of algebra, pages 111–115. Kluwer Academic Publishers, Dordrecht, 2002.
- [GLSŻ00] Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Żuk. On a question of Atiyah. C. R. Acad. Sci. Paris Sér. I Math., 331(9):663–668, 2000.
- [Glu61] V. M. Glushkov. Abstract theory of automata. Uspekhi mat. nauk., 16(5):3–62, 1961. (in Russian).
- [GM05] Yair Glasner and Shahar Mozes. Automata and square complexes. Geom. Dedicata, 111:43–64, 2005. (available at http://arxiv.org/abs/math.GR/0306259).
- [GN07] Rostislav Grigorhuk and Volodymyr Nekrashevych. Self-similar groups, operator algebras and schur complement. J. Modern Dyn., 1(3):323–370, 2007.
- [GNS00] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii. Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134–214, 2000.
- [GNŠ06a] Rostislav Grigorchuk, Volodymyr Nekrashevych, and Zoran Šunić. Hanoi towers group on 3 pegs and its pro-finite closure. *Oberwolfach Reports*, 25:15–17, 2006.
- [GNŠ06b] Rostislav Grigorchuk, Volodymyr Nekrashevych, and Zoran Šunić. Hanoi towers groups. *Oberwolfach Reports*, 19:11–14, 2006.
- [Gol68] E. S. Golod. Some problems of Burnside type. In Proc. Internat. Congr. Math. (Moscow, 1966), pages 284–289. Izdat. "Mir", Moscow, 1968.
- [GP72] F. Gecseg and I. Peák. Algebraic theory of automata. Akadémiai Kiadó, Budapest, 1972. Disquisitiones Mathematicae Hungaricae, 2.
- [Gri80] R. I. Grigorčuk. On Burnside's problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53–54, 1980.
- [Gri83] R. I. Grigorchuk. On the Milnor problem of group growth. *Dokl. Akad. Nauk SSSR*, 271(1):30–33, 1983.
- [Gri84] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939–985, 1984.
- [Gri85] R. I. Grigorchuk. Degrees of growth of p-groups and torsion-free groups. $Mat.\ Sb.\ (N.S.),\ 126(168)(2):194-214,\ 286,\ 1985.$
- [Gri89] R. I. Grigorchuk. On the Hilbert-Poincaré series of graded algebras that are associated with groups. *Mat. Sb.*, 180(2):207–225, 304, 1989.
- [Gri98] R. I. Grigorchuk. An example of a finitely presented amenable group that does not belong to the class EG. *Mat. Sb.*, 189(1):79–100, 1998.

- [Gri99] R. I. Grigorchuk. On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata. In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture Note Ser., pages 290–317. Cambridge Univ. Press, Cambridge, 1999.
- [Gri00] R. I. Grigorchuk. Just infinite branch groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 121–179. Birkhäuser Boston, Boston, MA, 2000.
- [GS83a] N. Gupta and Said Sidki. Some infinite p-groups. Algebra i Logika, 22(5):584-589, 1983.
- [GS83b] Narain Gupta and Saïd Sidki. On the Burnside problem for periodic groups. Math. Z., 182(3):385–388, 1983.
- [GŠ06] Rostislav Grigorchuk and Zoran Šunik. Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C. R. Math. Acad. Sci. Paris, 342(8):545– 550, 2006.
- [GŠ07] Rostislav Grigorchuk and Zoran Šunić. Self-similarity and branching in group theory. In *Groups St. Andrews 2005, I*, volume 339 of *London Math. Soc. Lecture Note Ser.*, pages 36–95. Cambridge Univ. Press, Cambridge, 2007.
- [GSŠ07] Rostislav Grigorchuk, Dmytro Savchuk, and Zoran Šunić. The spectral problem, substitutions and iterated monodromy. In *Probability and mathematical physics*, volume 42 of *CRM Proc. Lecture Notes*, pages 225–248. Amer. Math. Soc., Providence, RI, 2007.
- [Gup89] Narain Gupta. On groups in which every element has finite order. Amer. Math. Monthly, 96(4):297–308, 1989.
- [GW00] R. I. Grigorchuk and J. S. Wilson. The conjugacy problem for certain branch groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):215–230, 2000.
- [GW03] R. I. Grigorchuk and J. S. Wilson. A structural property concerning abstract commensurability of subgroups. J. London Math. Soc. (2), 68(3):671–682, 2003.
- [GŻ99] Rostislav I. Grigorchuk and Andrzej Żuk. On the asymptotic spectrum of random walks on infinite families of graphs. In Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 188–204. Cambridge Univ. Press, Cambridge, 1999.
- [GZ01] Rostislav I. Grigorchuk and Andrzej Zuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. *Geom. Dedicata*, 87(1-3):209–244, 2001.
- [GZ02a] Rostislav I. Grigorchuk and Andrzej Zuk. On a torsion-free weakly branch group defined by a three state automaton. *Internat. J. Algebra Comput.*, 12(1-2):223–246, 2002.
- [GŻ02b] Rostislav I. Grigorchuk and Andrzej Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. In Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), volume 298 of Contemp. Math., pages 57–82. Amer. Math. Soc., Providence, RI, 2002.
- [Hoř63] Jiří Hořejš. Transformations defined by finite automata. Problemy Kibernet., 9:23–26, 1963.

- [KAP85] V. B. Kudryavtsev, S. V. Aleshin, and A. S. Podkolzin. Vvedenie v teoriyu avtomatov. "Nauka", Moscow, 1985.
- [KM82] M. I. Kargapolov and Yu. I. Merzlyakov. Osnovy teorii grupp. "Nauka", Moscow, third edition, 1982.
- [Kos90] A. I. Kostrikin. Around Burnside, volume 20 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by James Wiegold.
- [KSS06] Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. The spectra of lamplighter groups and Cayley machines. Geom. Dedicata, 120:193–227, 2006.
- [Leo98] Yu. G. Leonov. The conjugacy problem in a class of 2-groups. $Mat.\ Zametki,$ $64(4):573-583,\ 1998.$
- [LN02] Yaroslav Lavreniuk and Volodymyr Nekrashevych. Rigidity of branch groups acting on rooted trees. Geom. Dedicata, 89:159–179, 2002.
- [Lys85] I. G. Lysënok. A set of defining relations for the Grigorchuk group. Mat. Zametki. 38(4):503-516, 634, 1985.
- [Mer83] Yu. I. Merzlyakov. Infinite finitely generated periodic groups. Dokl. Akad. Nauk SSSR, 268(4):803–805, 1983.
- [Mil68] J. Milnor. Problem 5603. Amer. Math. Monthly, 75:685–686, 1968.
- [MNS00] O. Macedońska, V. Nekrashevych, and V. Sushchansky. Commensurators of groups and reversible automata. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, (12):36–39, 2000.
- [MS08] Y. Muntyan and D. Savchuk. AutomGrp GAP package for computations in self-similar groups and semigroups, Version 1.1.2, 2008. (available at http://finautom.sourceforge.net).
- [Nek05] Volodymyr Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
- [Nek07a] V. Nekrashevych. Free subgroups in groups acting on rooted trees, 2007. preprint.
- [Nek07b] Volodymyr Nekrashevych. A group of non-uniform exponential growth locally isomorphic to $IMG(z^2 + i)$, 2007. preprint.
- [Neu86] Peter M. Neumann. Some questions of Edjvet and Pride about infinite groups. Illinois J. Math., 30(2):301–316, 1986.
- [NS04] V. Nekrashevych and S. Sidki. Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms. volume 311 of London Math. Soc. Lect. Note Ser., pages 375–404. Cambridge Univ. Press, 2004.
- [NT08] Volodymyr Nekrashevych and Alexander Teplyaev. Groups and analysis on fractals. to appear in Proceedings of "Analysis on Graphs and Applications", 2008.
- [Oli98] Ricardo Oliva. On the combinatorics of extend rays in the dynamics of the complex Henon map. PhD thesis, Cornell University, 1998.

- [Per00] E. L. Pervova. Everywhere dense subgroups of a group of tree automorphisms. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):356–367, 2000.
- [Per02] E. L. Pervova. The congruence property of AT-groups. Algebra Logika, 41(5):553-567, 634, 2002.
- [Pri80] Stephen J. Pride. The concept of "largeness" in group theory. In Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), volume 95 of Stud. Logic Foundations Math., pages 299–335. North-Holland, Amsterdam, 1980.
- [Roz93] A. V. Rozhkov. Centralizers of elements in a group of tree automorphisms. Izv. Ross. Akad. Nauk Ser. Mat., 57(6):82–105, 1993.
- [Roz98] A. V. Rozhkov. The conjugacy problem in an automorphism group of an infinite tree. *Mat. Zametki*, 64(4):592–597, 1998.
- [RS] John Rhodes and Pedro V. Silva. An algebraic analysis of turing machines and cook's theorem leading to a profinite fractal differential equation. preprint.
- [RS02a] I. I. Reznikov and V. I. Sushchanskii. Growth functions of two-state automata over a two-element alphabet. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, (2):76–81, 2002.
- [RS02b] I. I. Reznikov and V. I. Sushchanskiĭ. Two-state Mealy automata of intermediate growth over a two-letter alphabet. Mat. Zametki, 72(1):102–117, 2002.
- [RS02c] I. I. Reznykov and V. I. Sushchansky. 2-generated semigroup of automatic transformations whose growth is defined by Fibonachi series. *Mat. Stud.*, 17(1):81–92, 2002.
- [Sav03] Dmytro M. Savchuk. On word problem in contracting automorphism groups of rooted trees. Visn. Kiïv. Univ. Ser. Fiz.-Mat. Nauki, (1):51–56, 2003.
- [Sid87a] Said Sidki. On a 2-generated infinite 3-group: subgroups and automorphisms. J. Algebra, 110(1):24–55, 1987.
- [Sid87b] Said Sidki. On a 2-generated infinite 3-group: the presentation problem. J. Algebra, 110(1):13–23, 1987.
- [Sid00] Said Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New York), 100(1):1925–1943, 2000. Algebra, 12
- [Sid04] Said Sidki. Finite automata of polynomial growth do not generate a free group. *Geom. Dedicata*, 108:193–204, 2004.
- [Sus79] V. I. Sushchansky. Periodic permutation p-groups and the unrestricted Burnside problem. DAN SSSR., 247(3):557–562, 1979. (in Russian).
- [VV05] M. Vorobets and Ya. Vorobets. On a free group of transformations defined by an automaton, 2005. To appear in Geom. Dedicata. (available at http://arxiv.org/abs/math/0601231).
- [Wil04a] John S. Wilson. Further groups that do not have uniformly exponential growth. J. Algebra, 279(1):292–301, 2004.
- [Wil04b] John S. Wilson. On exponential growth and uniformly exponential growth for groups. *Invent. Math.*, 155(2):287–303, 2004.

- [Wol02] Stephen Wolfram. A new kind of science. Wolfram Media, Inc., Champaign, IL, 2002.
- [WZ97] J. S. Wilson and P. A. Zalesskii. Conjugacy separability of certain torsion groups. Arch. Math. (Basel), 68(6):441–449, 1997.
- [Zar64] V. P. Zarovnyĭ. On the group of automatic one-to-one mappings. Dokl. Akad. Nauk SSSR, 156:1266–1269, 1964.
- [Zar65] V. P. Zarovnyĭ. Automata substitutions and wreath products of groups. Dokl. Akad. Nauk SSSR, 160:562–565, 1965.
- [Zel91] Efim I. Zelmanov. On the restricted Burnside problem. In *Proceedings* of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 395–402, Tokyo, 1991. Math. Soc. Japan.

CONTACT INFORMATION

I. Bondarenko Kyiv Taras Shevchenko University, Ukraine

E-Mail: ievgbond@gmail.com

R. Grigorchuk Texas A&M University, USA

 $E ext{-}Mail:$ grigorch@math.tamu.edu URL: www.math.tamu.edu/~grigorch

R. Kravchenko Texas A&M University, USA

E-Mail: rkchenko@math.tamu.edu

Y. Muntyan Texas A&M University, USA

 $E ext{-}Mail:$ muntyan@math.tamu.edu URL: www.math.tamu.edu/~muntyan

V. Nekrashevych Texas A&M University, USA

 $E ext{-}Mail:$ nekrash@math.tamu.edu URL: www.math.tamu.edu/~nekrash

D. Savchuk Texas A&M University, USA

E-Mail: savchuk@math.tamu.edu
URL: www.math.tamu.edu/~savchuk

Z. Šunić Texas A&M University, USA

 $E ext{-}Mail:$ sunic@math.tamu.edu URL: www.math.tamu.edu/~sunik

Received by the editors: 18.12.2007 and in final form 15.02.2007.