Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{I S _ { d }}$

Yevgeniya Kochubinska

Communicated by A. Petravchuk

$$
14.06 .2005
$$

Abstract. We study some combinatorial properties of $\ell_{p}^{k} \mathcal{I} \mathcal{S}_{d}$. In particular, we calculate its order, the number of idempotents and the number of \mathcal{D}-classes. For a given based graph $\Gamma \subset T$ we compute the number of elements in its \mathcal{D}-class D_{Γ} and the number of \mathcal{R} - and \mathcal{L}-classes in D_{Γ}.

Introduction

The wreath product of semigroups has appeared as a generalization to semigroups of the corresponding construction for groups. Firstly transformation wreath product of transformation semigroups has appeared as a natural generalization of the wreath product of permutation groups [1]. Later different modifications have been introduced, for instance, partial wreath product of arbitrary semigroup and semigroup of partial transformation was defined in [2] and construction related to this one, namely inverse wreath product of inverse semigroups, was proposed in [3]. Wreath products provide a means to construct a semigroup with certain properties. They also appear in certain natural settings, that allows to lighten the study of known semigroups presenting them if possible as a wreath product of appropriate semigroups

The article discusses the partial wreath product of two finite symmetric semigroup $\mathcal{I} \mathcal{S}_{d}$ and a generalization of this construction to the case

[^0]of more then two factors. It is proved that the partial wreath k-th power of the semigroup $\mathcal{I} \mathcal{S}_{d}$ is isomorphic to the appropriate subsemigroup of semigroup of partial automorphisms of the rooted k-level d-regular tree.
 late its order and the number of idempotents and the number of \mathcal{D}-classes. Also, we describe Green's relations of the partial wreath power of $\mathcal{I} \mathcal{S}_{d}$ and calculate the number of \mathcal{D}-classes, the number of elements in a given \mathcal{D}-class and the number of \mathcal{R} - and \mathcal{L}-classes in this \mathcal{D}-class.

1. The partial wreath power of semigroup $\mathcal{I} \mathcal{S}_{d}$

Let $\mathcal{N}_{d}=\{1, \ldots, d\}$. Define $S^{P \mathcal{N}_{d}}$ by

$$
S^{P \mathcal{N}_{d}}=\left\{f: \mathcal{N}_{d} \rightarrow \mathcal{I} \mathcal{S}_{d} \mid \operatorname{dom}(f) \subseteq \mathcal{N}_{d}\right\}
$$

as the set of functions from subsets of \mathcal{N}_{d} to $\mathcal{I} \mathcal{S}_{d}$. If $f, g \in S^{P \mathcal{N}_{d}}$, we define the product $f g$ by:

$$
\operatorname{dom}(f g)=\operatorname{dom}(f) \cap \operatorname{dom}(g),(f g)(x)=f(x) g(x) \text { for all } x \in \operatorname{dom}(f g)
$$

If $a \in \mathcal{I} \mathcal{S}_{d}, f \in S^{P \mathcal{N}_{d}}$, we define f^{a} by:

$$
\begin{gathered}
\operatorname{dom}\left(f^{a}\right)=\{x \in \operatorname{dom}(a) ; x a \in \operatorname{dom}(f)\}=(\operatorname{ran}(a) \cap \operatorname{dom}(f)) a^{-1} \\
\left(f^{a}\right)(x)=f(x a)
\end{gathered}
$$

Definition. The partial wreath square of semigroup $\mathcal{I} \mathcal{S}_{d}$ is defined as the set $\left\{(f, a) \in S^{P \mathcal{N}_{d}} \times \mathcal{I} \mathcal{S}_{d} \mid \operatorname{dom}(f)=\operatorname{dom}(a)\right\}$ with composition defined by

$$
(f, a) \cdot(g, b)=\left(f g^{a}, a b\right)
$$

Denote it by $\mathcal{I} \mathcal{S}_{d}{l_{p}}^{\mathcal{I}} \mathcal{S}_{d}$.
The partial wreath square of $\mathcal{I} \mathcal{S}_{d}$ is a semigroup, moreover, it is an inverse semigroup [1, Lemmas 2.22 and 4.6]. We may recursively define any partial wreath power of the finite inverse symmetric semigroup.

Definition. The partial wreath k-th power of semigroup $\mathcal{I} \mathcal{S}_{d}$ is defined as semigroup ${ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}=\left(\imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}\right) \imath_{p} \mathcal{I} \mathcal{S}_{d}=\left\{(f, a) \subset S_{k-1}^{P \mathcal{N}_{d}} \times\right.$ $\left.\mathcal{I} \mathcal{S}_{d} \mid \operatorname{dom}(f)=\operatorname{dom}(a)\right\}$ with composition defined by

$$
(f, a) \cdot(g, b)=\left(f g^{a}, a b\right)
$$

where $S_{k-1}^{P \mathcal{N}_{d}}=\left\{f: \mathcal{N}_{d} \rightarrow \imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}, \operatorname{dom}(f) \subseteq \mathcal{N}_{d}\right\}, \imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}$ is the partial wreath $(k-1)$-th power of semigroup $\mathcal{I} \mathcal{S}_{d}$

For an arbitrary function F we denote $F^{k}(x)=\underbrace{F(F \ldots(F}_{k}(x)) \ldots)$.
Proposition 1. $\left|\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}\right|=S^{k}(1)$, where $S(x)=\sum_{i=1}^{d}\binom{n}{i}^{2} i!x^{i}$
Proof. We provide the proof by induction on k.
Let $k=1$, then $\left|\mathcal{I} \mathcal{S}_{d}\right|=\sum_{i=1}^{d}\binom{n}{i}^{2} i!=S(1)$ (cf. [4]).
Assume that we know the order of the partial wreath $(k-1)$-th power of semigroup $\mathcal{I} \mathcal{S}_{d}:\left|2_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}\right|=S^{k-1}(1)$. Prove that $\left|\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}\right|=S^{k}(1)$. The elements of semigroup $\imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}$ are pairs $(f, a) \in S_{k-1}^{P \mathcal{N}_{d}} \times \mathcal{I} \mathcal{S}_{d}$ with $\operatorname{dom}(f)=\operatorname{dom}(a)$. Let $P_{A}=\left\{a \in \mathcal{I} \mathcal{S}_{d} \mid \operatorname{dom}(a)=A\right\}$. Then the number of all such pairs (f, a) is equal to

$$
\begin{align*}
\sum_{A \subset \mathcal{N}_{d}} \mid{\underset{p}{k-1}}_{2}^{\left.\operatorname{I} \mathcal{S}_{d}\right|^{|A|} \cdot\left|P_{A}\right|=} & \sum_{i=1}^{d}\left|\underset{p}{k-1} \mathcal{I} \mathcal{S}_{d}\right|^{i}\binom{d}{i}^{2} i! \\
& =S\left(\left|{ }_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}\right|\right)=S\left(S^{k-1}(1)\right)=S^{k}(1) \tag{1}
\end{align*}
$$

Let $E\left(\mathcal{I} \mathcal{S}_{d}\right)$ be the set of idempotents of semigroup $\mathcal{I} \mathcal{S}_{d}$.
Proposition 2. An element $(f, a) \in \mathcal{I S}_{d} \imath_{p} \mathcal{I} \mathcal{S}_{d}$ is an idempotent if and only if $a \in E\left(\mathcal{I} \mathcal{S}_{d}\right)$ and $f(\operatorname{dom}(a)) \subseteq E\left(\mathcal{I} \mathcal{S}_{d}\right)$.

Proof. Let (f, a) be idempotent, then $(f, a)(f, a)=\left(f f^{a}, a^{2}\right)=(f, a)$. Hence, $f f^{a}=f, a^{2}=a$, i.e., $a \in \mathcal{I} \mathcal{S}_{d}$ is an idempotent. It follows from the equality $f f^{a}=f$ that for any $c \in \operatorname{dom}(a) f f^{a}(c a)=f(c a) f^{a}(c a)=$ $f(c a) f\left(c a^{2}\right)=f(c a) f(c a)$.

Conversely, let $(f, a) \in \imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ be such an element that $a \in E\left(\mathcal{I} \mathcal{S}_{d}\right)$ and $f(\operatorname{dom}(a)) \subseteq E\left(\mathcal{I} \mathcal{S}_{d}\right)$. Then for any $c \in \operatorname{dom}(a) f(c a)=f(c a) f(c a)$. So $f(c a)=f(c a) f(c a)=f(c a) f\left(c a^{2}\right)=f f^{a}(c a)$. Since it holds for all $c \in \operatorname{dom}(a)$, we have $(f, a)(f, a)=(f, a)$.

Let $T_{k}^{(d)}$ be a rooted k-level d-regular tree. The partial automorphism of the tree $T_{k}^{(d)}$ is such partial (i.e. not necessarily completely defined) injective $\operatorname{map} \varphi: V T_{k}^{(d)} \rightarrow V T_{k}^{(d)}$ that subgraphs generated by domain of φ and range of φ are isomorphic (i.e. φ maps isomorphically certain subgraph of the tree $T_{k}^{(d)}$ on another subgraph of the same tree). Partial automorphisms form a semigroup under composition $a b(x)=b(a(x))$, we will denote it by PAut $T_{k}^{(d)}$. Evidently, this semigroup is an inverse semigroup. Let ConPAut T be the semigroup of partial automorphisms of
the tree T, defined on a connected graph containing root and preserving the level of vertices. Further we will consider only partial automorphisms of this type.

Theorem 1. Let $T_{k}^{(d)}$ be a rooted k-level d-regular tree. Then

$$
\operatorname{ConPAut} T_{k}^{(d)} \cong{ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}
$$

Proof. We provide the proof by induction on k.
Let $T_{1}^{(d)}$ be one-level tree, ConPAut $T_{1}^{(d)}$ be the semigroup of partial automorphisms of this tree defined as above. By definition, ConPAut $T_{1}^{(d)}$ contains partial automorphisms defined on a connected subgraph and that fix the root vertex and preserve the level of vertices, then every partial automorphism $\varphi \in \operatorname{ConPAut} T_{1}^{(d)}$ is determined only by the vertices permutation satisfying condition

$$
\varphi(i)= \begin{cases}a_{i}, & \text { if } i \in \operatorname{dom}(\varphi) \\ \emptyset, & \text { otherwise }\end{cases}
$$

In other words, φ is the partial permutation from $\mathcal{I} \mathcal{S}_{d}$. So, every partial automorphism $\varphi \in \operatorname{ConPAut} T_{1}^{(d)}$ is uniquely defined by partial permutation $\sigma \in \mathcal{I} \mathcal{S}_{d}$. Thus, we have one-to-one correspondence between ConPAut $T_{1}^{(d)}$ and $\mathcal{I} \mathcal{S}_{d}$. Hence ConPAut $T_{1}^{(d)} \cong \mathcal{I} \mathcal{S}_{d}$.

Assume that $\imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d} \cong$ ConPAut $_{k-1}$.
Prove that $\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d} \cong \operatorname{ConPAut}_{k}$. Let $\varphi \in \operatorname{ConPAut}_{k}$ and V_{i} be the i-th level of the tree $T_{k}^{(d)}$. Define a map $\psi: \operatorname{ConPAut}_{k} \rightarrow{ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ by: $\varphi \mapsto\left(\left.\varphi\right|_{T_{k-1}},\left.\varphi\right|_{V_{1}}\right)$, where $\left.\varphi\right|_{T_{k-1}}$ is a partial automorphism that acts on the rooted subtrees, which root vertices lie on the first level of the tree $T_{k}^{(d)}$ and belong to $\operatorname{dom}\left(\left.\varphi\right|_{V_{1}}\right)$. Hence $\left.\varphi\right|_{V_{1}} \in \mathcal{I} \mathcal{S}_{d}$ and $\left.\varphi\right|_{T_{k-1}}$: $\operatorname{dom}\left(\left.\varphi\right|_{V_{1}}\right) \rightarrow \imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}$. Thus we may establish correspondence between given partial automorphism $\varphi \in \operatorname{ConPAut}_{k}$ and a unique pair (σ, f), where $\sigma \in \mathcal{I} \mathcal{S}_{d}, f: \mathcal{N}_{d} \rightarrow \imath_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}, \operatorname{dom}(f)=\operatorname{dom}(\sigma)$. And we have ConPAut $T_{k}^{(d)} \cong{ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}$.

Proposition 3. Let $E\left({ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}\right)$ be the set of idempotents of semigroup $\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$. Then $\left|E\left(\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}\right)\right|=F^{k}(1)=\underbrace{\left(\left((1+1)^{d}+1\right)^{d} \ldots+1\right)^{d}}_{k}$, where $F(x)=(x+1)^{d}$.

Proof. It follows from the theorem 1 that there exists bijection between set of idempotents of semigroup $\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ and set of connected subgraphs of the tree $T_{k}^{(d)}$ with different domains. We calculate number of idempotents as a number of such subgraphs of the tree $T_{k}^{(d)}$, because idempotents of PAut are identity maps: $i d_{\Gamma}: \Gamma \rightarrow \Gamma, \Gamma \subset T_{k}^{(d)}$.

We compute their number by induction on k. Let $k=1$, then $\imath_{p}^{1} \mathcal{I} \mathcal{S}_{d}=$ $\mathcal{I} \mathcal{S}_{d}$, consequently $\left|E\left(2_{p}^{1} \mathcal{I} \mathcal{S}_{d}\right)\right|=\left|E\left(\mathcal{I} \mathcal{S}_{d}\right)\right|=2^{d}=F(1)$.

Assume that $\left|E\left(2_{p}^{k-1} \mathcal{I} \mathcal{S}_{d}\right)\right|=F^{k-1}(1)=\left|E\left(\operatorname{PAut} T_{k-1}^{(d)}\right)\right|$.
Find now the number of idempotents of semigroup PAut $T_{k}^{(d)}$. For all $i=1, \ldots, d$ we can choose i-element subset among the first level vertices in $\binom{d}{i}$ ways. Denote these subsets $A_{i}^{j}, i=1, \ldots, d, j=1, \ldots,\binom{d}{i}$ Each vertex from A_{i}^{j} is the root vertex of $(k-1)$-level tree. We know the number of idempotents of the semigroup PAut $T_{k-1}^{(d)}$, then

$$
\begin{aligned}
\left|E\left(\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}\right)\right|=\left|E\left(\operatorname{PAut} T_{k}^{(d)}\right)\right| & =\sum_{i=1}^{d}\binom{d}{i}\left(F^{k-1}(1)\right)^{i} \\
& =\left(F^{k-1}(1)+1\right)^{d}=F\left(F^{k-1}\right)=F^{k}(1)
\end{aligned}
$$

2. Combinatorics of Green's relations

Theorem 2. Let $(f, a),(g, b) \in l_{p}^{k} \mathcal{I} \mathcal{S}_{d}$. Then

1. $(f, a) \mathcal{L}(g, b)$ if and only if $\operatorname{ran}(a)=\operatorname{ran}(b)$ and $g^{b^{-1}}(z) \mathcal{L} f^{a^{-1}}(z)$ for all $z \in \operatorname{ran}(a)$, where a^{-1} is the inverse element for a;
2. $(f, a) \mathcal{R}(g, b)$ if and only if $\operatorname{dom}(a)=\operatorname{dom}(b)$ and $f(z) \mathcal{R} g(z)$ for all $z \in \operatorname{dom}(a)$;
3. $(f, a) \mathcal{H}(g, b)$ if and only if $\operatorname{ran}(a)=\operatorname{ran}(b)$ and $\operatorname{dom}(a)=\operatorname{dom}(b)$, $g^{b^{-1}}(z) \mathcal{L} f^{a^{-1}}(z)$ and $f(z) \mathcal{R} g(z)$ for $z \in \operatorname{dom}(a) \cap \operatorname{ran}(a) ;$
4. $(f, a) \mathcal{D}(g, b)$ if and only if there exists a bijection map $x: \operatorname{dom}(b) \rightarrow$ dom (a) such that $f(z x) \mathcal{D} g(z)$.
5. $\mathcal{D}=\mathcal{J}$.

Proof. Green's relations on semigroup $\mathcal{I} \mathcal{S}_{d}$ are described in [4].

1. Let $(f, a) \mathcal{L}(g, b)$, then there exist $(u, x),(v, y) \in \tau_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ such that $(u, x)(f, a)=(g, b)$ and $(v, y)(g, b)=(f, a)$, i.e.

$$
\begin{aligned}
(u, x)(f, a) & =\left(u f^{x}, x a\right)=(g, b), \\
(v, y)(g, b) & =\left(v g^{y}, y b\right)=(f, a)
\end{aligned}
$$

We get from these equalities that $x a=b, y b=a$, and therefore $a \mathcal{L} b$ and then $\operatorname{ran}(a)=\operatorname{ran}(b)$, and also we get $u f^{x}=g, v g^{y}=f$. Multiplying the both sides of the equality $x a=b$ by a^{-1} from the left and by b^{-1} from the right we obtain $b^{-1} x=a^{-1}$. Analogously we obtain $a^{-1} y=b$. Put $t=z b^{-1}$ for any $z \in \operatorname{dom}\left(b^{-1}\right)=\operatorname{ran}(b)$, then

$$
\begin{gathered}
u f^{x}(t)=g(t) \\
u(t) f(t x)=g(t) \\
u\left(z b^{-1}\right) f\left(z b^{-1} x\right)=u\left(z b^{-1}\right) f\left(z a^{-1}\right)=g\left(z b^{-1}\right), \\
u\left(z b^{-1}\right) f^{a^{-1}}(z)=g^{b^{-1}}(z)
\end{gathered}
$$

Putting $t=z a^{-1}$ for any $z \in \operatorname{ran}(a)=\operatorname{ran}(b)$, we analogously get $v\left(z a^{-1}\right) g^{b^{-1}}(z)=f^{a^{-1}}(z)$. We have $u\left(z b^{-1}\right) f^{a^{-1}}(z)=g^{b^{-1}}(z)$ and $v\left(z a^{-1}\right) g^{b^{-1}}(z)=f^{a^{-1}}(z)$. This implies $f^{a^{-1}}(z) \mathcal{L} g^{b^{-1}}(z)$, $z \in \operatorname{ran}(a)=\operatorname{ran}(b)$.
Conversely, let $\operatorname{ran}(a)=\operatorname{ran}(b)$ and $f^{a^{-1}}(z) \mathcal{L} g^{b^{-1}}(z) \forall z \in \operatorname{ran}(a)=$ $\operatorname{ran}(b)$. From the first condition we get $a \mathcal{L} b$, and hence there exist $x, y \in \mathcal{I} \mathcal{S}_{d}$ such that $x a=b, y b=a$. From the second condition it follows that there exist functions $u, v \in S_{k}^{P \mathcal{N}_{d}}$ such that $u(z) f^{a^{-1}}(z)=g^{b^{-1}}(z)$ and $v(z) g^{b^{-1}}(z)=f^{a^{-1}}(z), z \in \operatorname{ran}(a)=$ $\operatorname{ran}(b)$. Consider $(u, x),(v, y) \in \imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$, where x, y, u, v are defined as above. Then

$$
(u, x)(f, a)=\left(u f^{x}, x a\right)=\left(u f^{b a^{-1}}, b\right)=\left(g^{b b^{-1}}, b\right)=(g, b)
$$

and in the same way we get $(v, y)(g, b)=(f, a)$. Therefore $(f, a) \mathcal{L}$ (g, b).
2. Let $(f, a) \mathcal{R}(g, b)$, then there exist $(u, x),(v, y) \in \gamma_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ such that $(f, a)(u, x)=(g, b),(g, b)(v, y)=(f, a)$. This is equivalent to $a x=$ $b, b y=a, f u^{a}=g, g v^{b}=f$. This gives us the conditions $a \mathcal{R} b$, and hence $\operatorname{dom}(a)=\operatorname{dom}(b)$, and $f u^{a}=g, g v^{b}=f$. Consequently, $f(z) \mathcal{R} g(z) \forall z \in \operatorname{dom}(a)$.
Conversely, let $(f, a),(g, b) \in l_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ and $\operatorname{dom}(a)=\operatorname{dom}(b), f(z) \mathcal{R}$ $g(z) \forall z \in \operatorname{dom}(a)$. From $\operatorname{dom}(a)=\operatorname{dom}(b)$ it follows $a \mathcal{R} b$, then
there exists $x, y \in \mathcal{I} \mathcal{S}_{d}$ such that $a x=b, b y=a$, and from $f(z) \mathcal{R}$ $g(z) \forall z \in \operatorname{dom}(a)$ it follows that there exist $u^{\prime}, v^{\prime} \in S_{k-1}^{P \mathcal{N}_{d}}$ such that for any $z \in \operatorname{dom}(a) f u^{\prime}(z)=g(z), g v^{\prime}(z)=f(z)$. Define $u, v \in S_{k-1}^{P \mathcal{N}_{d}}$ by $u(z a)=u^{\prime}(z), v(z b)=v^{\prime}(z)$. Then for $t \in \operatorname{dom}(a)$ it holds $f u^{a}(t)=f(t) u(t a)=f(t) u^{\prime}(t)=g(t)$ and $g v^{b}(t)=f(t)$, then

$$
\begin{gathered}
(f, a)(u, x)=\left(f u^{a}, a x\right)=(g, b) \\
(g, b)(v, y)=(f, a)
\end{gathered}
$$

Therefore, $(f, a) \mathcal{R}(g, b)$.
3. As $\mathcal{H}=\mathcal{L} \wedge \mathcal{R}$, this statement follows from the first and second ones.
4. Let $(f, a) \mathcal{D}(g, b)$. Then there exist $(h, c) \in \gamma_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ such that $(f, a) \mathcal{L}(h, c)$ and $(h, c) \mathcal{R}(g, b)$. From $(f, a) \mathcal{L}(h, c)$ we get that $\operatorname{ran}(a)=\operatorname{ran}(c)$ and for $z \in \operatorname{ran}(a) f^{a^{-1}}(z) \mathcal{L} h^{c^{-1}}(z)$. Then there exist functions u and v such that $u(z) f^{a^{-1}}(z)=h^{c^{-1}}(z)$ and $v(z) h^{c^{-1}}(z)=f^{a^{-1}}(z)$. Put $x=a^{-1} c$. By definition of $\mathcal{I} \mathcal{S}_{d}$ x is a partial bijection map. We now obtain $f(z x) \mathcal{L} h(z)$, and $x: \operatorname{dom}(c) \rightarrow \operatorname{dom}(a)$. From $(h, c) \mathcal{R}(g, b)$ we have that for $z \in$ $\operatorname{dom}(b): h(z) \mathcal{R} g(z)$ and $\operatorname{dom}(b)=\operatorname{dom}(c) . \operatorname{From} \operatorname{ran}(a)=\operatorname{ran}(c)$ and $\operatorname{dom}(b)=\operatorname{dom}(c)$ we get $|\operatorname{dom}(a)|=|\operatorname{dom}(b)|$. Thus there a exists bijection $x: \operatorname{dom}(b) \rightarrow \operatorname{dom}(a)$ such that $f(z x) \mathcal{D} h(z), z \in$ $\operatorname{dom}(b) \cap \operatorname{ran}(a)$.
Conversely, assume that there exists a bijection map $x: \operatorname{dom}(b) \rightarrow$ $\operatorname{dom}(a)$ such that $f(z x) \mathcal{D} g(z)$, i.e. there exists a function $h(z)$ such that $f(z x) \mathcal{L} h(z)$ and $h(z) \mathcal{R} g(z)$. Let $u^{\prime}(z), v^{\prime}(z) \in S^{P \mathcal{N}_{d}}$ satisfy conditions $u^{\prime}(z) f(z x)=u^{\prime} f^{x}(z)=h(z)$ and $v^{\prime}(z) h(z)=f(z x)$. Put $c=x a$, then c is partial bijection $c: \operatorname{dom}(b) \rightarrow \operatorname{ran}(a)$ exists. Define $u(z)$ by $u(z)=u^{\prime}(z)$ and $v(z)$ by $v(z)=v^{\prime}\left(z x^{-1}\right)$. Then

$$
\begin{gathered}
(u, x)(f, a)=\left(u f^{x}, x a\right)=(h, c) \\
\left(v, x^{-1}\right)(h, c)=(f, a)
\end{gathered}
$$

Hence $(f, a) \mathcal{L}(h, c)$. As $h(z) \mathcal{R} g(z)$ and $\operatorname{dom}(c)=\operatorname{dom}(b)$, then $(h, c) \mathcal{R}(g, b)$. It implies $(f, a) \mathcal{D}(g, b)$.
5. As $\chi_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ is finite then $\mathcal{D}=\mathcal{J}$.

Corollary. If $(f, a),(g, b) \in \mathcal{I} \mathcal{S}_{d} \imath_{p} \mathcal{I} \mathcal{S}_{d}$, then

1. $(f, a) \underset{\mathcal{L}}{\mathcal{L}}(g, b)$ if and only if $\operatorname{ran}(a)=\operatorname{ran}(b)$ and $\operatorname{ran}\left(g^{a^{-1}}(z)\right)=$ $\operatorname{ran}\left(f^{b^{-1}}(z)\right)$ for all $z \in \operatorname{ran}(a)$;
2. $(f, a) \mathcal{R}(g, b)$ if and only if $\operatorname{dom}(a)=\operatorname{dom}(b)$ and $\operatorname{dom}(f(z))=$ $\operatorname{dom}(g(z))$ for all $z \in \operatorname{dom}(a)$;
3. $(f, a) \mathcal{H}(g, b)$ if and only if $\operatorname{ran}(a)=\operatorname{ran}(b), \operatorname{dom}(a)=\operatorname{dom}(b)$, $\operatorname{ran}\left(g^{a^{-1}}(z)\right)=\operatorname{ran}\left(f^{b^{-1}}(z)\right)$ for $z \in \operatorname{ran}(a)$, and $\operatorname{dom}(f(z))=$ $\operatorname{dom}(g(z))$ for $z \in \operatorname{dom}(a)$.

Lemma 1. Let $\sigma, \tau \in \operatorname{PAut} T_{k}^{(d)}$. Then $\sigma \mathcal{D} \tau$ if and only if $\operatorname{dom}(\sigma) \cong$ $\operatorname{dom}(\tau)$.

Proof. Let $\sigma \mathcal{D} \tau$, then there exists $\gamma \in \operatorname{PAut} T_{k}^{(d)}$ such that $\sigma \mathcal{L} \gamma$ and $\gamma \mathcal{R} \tau$. Thus, $\operatorname{ran}(\sigma)=\operatorname{ran}(\gamma), \operatorname{dom}(\gamma)=\operatorname{dom}(\tau)$. By definition of semigroup PAut $T_{k}^{(d)}$ all these maps are isomorphisms between their domains and ranges. It immediately follows that map $\varphi=\gamma \sigma^{-1}: \operatorname{dom}(\tau) \rightarrow \operatorname{dom}(\sigma)$ is isomorphism from $\operatorname{dom}(\tau)$ to $\operatorname{dom}(\sigma)$, so $\operatorname{dom}(\sigma) \cong \operatorname{dom}(\tau)$.

Let now $\operatorname{dom}(\sigma) \cong \operatorname{dom}(\tau)$. As before by definition of semigroup $\operatorname{PAut} T_{k}^{(d)}$ it follows $\operatorname{dom}(\sigma) \cong \operatorname{ran}(\sigma)$, hence isomorphism $\gamma: \operatorname{ran}(\sigma) \rightarrow$ $\operatorname{dom}(\tau)$ exists. Therefore, $\sigma \mathcal{L} \gamma$ and $\gamma \mathcal{R} \tau$. It implies $\sigma \mathcal{D} \tau$.
 $P^{k}(1)$, where $P(x)=\binom{x+d}{d}$.

Proof. By Theorem 1 and Lemma 1the calculation of the number of \mathcal{D} classes of semigroup $\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$ is equivalent to that of the number of nonisomorphic connected subgraphs of the tree $T_{k}^{(d)}$ containing root vertex. Later on all subgraphs are supposed to be connected and to contain root vertex.

Partition the set of all connected subgraphs of the tree $T_{k}^{(d)}$ into the classes of isomorphic subgraphs. Define the set of graphs-representatives denoted by $G R e p_{k}$ in the following way.

Consider firstly one-level d-regular tree. It is clear that the set of all connected subgraphs is divided into $d+1$ class. We choose a representative from each class and number them with integers from 0 to d in decreasing order of root vertices degree. For example, if $d=3$ we have:

0

1
-

2

Define the following order relation on the set of graphs-representatives $G R e p_{1}$. Let i_{1}, i_{2} be the numbers of graphs Γ_{1} and Γ_{2} respectively. Then $\Gamma_{1}>\Gamma_{2} \Leftrightarrow i_{1}<i_{2}$.

Consider now 2-level tree $T_{2}^{(d)}$. Partition again the set of connected subgraphs into classes of isomorphic subgraphs. Notice that each vertex of the first level of $T_{2}^{(d)}$ is a root vertex of a one-level subgraph, which is isomorphic to a ceratin subgraph from the set GRep 1_{1}. Attach a number sequence $\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ to each subgraph by, where l is a degree of the root vertex and i_{j} is the number of subgraph from GRep p_{1} subgraph of $T_{2}^{(d)}$ with root vertex labelled by j is isomorphic to. For example, the corresponding sequence for subgraph

is $(0,1,1)$. It is evident that connected subgraphs of $T_{2}^{(d)}$ are isomorphic if and only if corresponding sequences are equal up to the permutation of sequences members. Choose a subgraph described by non-decreasing corresponding sequence from each class of isomorphic subgraphs. We call these subgraphs graphs-representatives and define a linear order relation on the set of graphs-representatives $G R e p_{2}$ in the following way: let $\Gamma_{1}, \Gamma_{1} \in G R e p_{2}$ and $a_{1}=\left(i_{1}, i_{2}, \ldots, i_{m}\right), a_{2}=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ be corresponding sequences. Then $\Gamma_{1}>\Gamma_{2}$ if and only if $a_{1}<a_{2}$, set of sequences is lexicographically ordered. For instance, if the number sequence related to subgraph Γ_{1} is $(0,0,0)$ and the number sequence related to subgraph Γ_{2} is $(0,0,1)$, then $\Gamma_{1}>\Gamma_{2}$. We have linearly ordered set and we may arrange graphs-representatives in decreasing order and number them in such a way that 0 corresponds to the "biggest" graph.

Let now $\Gamma_{0}>\Gamma_{1}>\ldots>\Gamma_{N}$ be ordered set GRep ${ }_{k-1}$ of graphsrepresentatives of $(k-1)$-level tree $T_{k-1}^{(d)}$. Partition again the set of all connected subgraph of the tree $T_{k}^{(d)}$ into classes of isomorphic subgraphs. Attach again a number sequence ($i_{1}, i_{2}, \ldots, i_{l}$) to each subgraph, where i_{j} is the number of corresponding graph from GRep p_{k-1}, $i_{j} \in\{0,1, \ldots, N\}, j=\overline{1, l}, l \leq d$, and construct the set of graphsrepresentatives $G R e p_{k}$ of the k-level tree $T_{k}^{(d)}$ as above. It is easy to check that set $G R e p_{k}$ has following properties:

1. For all subgraph $\Gamma \subset T_{k}^{(d)}$ there exists subgraph $\tilde{\Gamma}$ from the set GRep $_{k}$ such that $\Gamma \cong \tilde{\Gamma}$;
2. If $\Gamma_{1} \cong \Gamma_{2}$, where $\Gamma_{1}, \Gamma_{2} \subset G R e p$, then $\Gamma_{1}=\Gamma_{2}$.

Therefore, we have to compute the cardinality of the set of graphsrepresentatives $G R e p_{k}$ to find the number of connected non-isomorphic subgraphs of the tree $T_{k}^{(d)}$ that gives us the number of \mathcal{D}-classes of semigroup $\imath_{p}^{k} \mathcal{I} \mathcal{S}_{d}$.

We use induction on k to calculate the cardinality of the set of graphsrepresentatives.

If $k=1$, then $\left|G \operatorname{Rep} p_{1}\right|=d+1=\binom{d+1}{d}=P(1)$.
Assume that $N=P^{k-1}(1)$ is the cardinality of the set of graphsrepresentatives $G R e p_{k-1}$ of $(k-1)$-level tree.

Each vertex of the first level of the tree $T_{k}^{(d)}$ is the root vertex of $(k-1)$-level tree that is isomorphic to a certain graph from $G R e p_{k-1}$. Assume that all vertices of the first level are labelled with integers from 1 to $l, l \leq d$. As set $G R e p_{k}$ contains no equal graphs, then corresponding sequences are all different. Hence, there exists one-to-one correspondence between set $\{1,2, \ldots, l\}$ and set $\{0,1, \ldots, N-1\}$. Consider all nondecreasing functions $f:\{1,2, \ldots, l\} \rightarrow\{0,1, \ldots, N-1\}$. The number of all such functions is equal to the cardinality of the set GRep ${ }_{k}$. Define $x_{0}=f(1), x_{1}=f(2)-f(1), \ldots, x_{l-1}=f(l)-f(l-1), x_{l}=N-1-f(l)$. Then $f(k)=x_{0}+x_{1}+x_{2}+\ldots+x_{k}$. Since f is non-decreasing, then for all $i=1, \ldots, l x_{i} \geq 0$. So the number of non-decreasing functions is equal to the number of integer solutions of the equation $N-1=x_{0}+x_{1}+\ldots+x_{l}$ for $l=1, \ldots, d$. Thus, we get the number of \mathcal{D}-classes of semigroup ${ }_{p}^{k} \mathcal{I} \mathcal{S}_{d}$:

$$
\sum_{l=0}^{d}\binom{N+l-1}{l}=\binom{N+d}{d}=P(N)=P\left(P^{k-1}(1)\right)=P^{k}(1)
$$

Let Γ be a subtree of the tree $T_{k}^{(d)}, S t_{T_{k}^{(d)}}(\Gamma)$ be the stabilizer of the subtree $\Gamma, \operatorname{Fix}_{T_{k}^{(d)}}(\Gamma)$ be the fixator of the subtree Γ and let D_{Γ} be \mathcal{D} class such that for any $\sigma \in D_{\Gamma} \operatorname{dom}(\sigma) \cong \Gamma$. Let $\left\{\Gamma_{1}, \ldots, \Gamma_{i}\right\}$ be the set of all pairwise non-isomorphic subtrees of Γ with root vertices in the first level of Γ. Let α_{j} be the number of isomorphic to Γ_{j} subtrees of Γ with root vertices in the first level of $\Gamma, j=1, \ldots, i$. The type of Γ is a set $\left\{\left(\Gamma_{1}, \alpha_{1}\right),\left(\Gamma_{2}, \alpha_{2}\right), \ldots,\left(\Gamma_{i}, \alpha_{i}\right)\right\}$ such that disjoint union of vertices sets of all subtrees and root vertex gives vertices of Γ. Notice that $\sum_{j=1}^{i} \alpha_{j}=l$, where l is the degree of root vertex of Γ.

Proposition 5. Let Γ be a subtree of the tree $T_{k}^{(d)}$ and its type be $\left\{\left(\Gamma_{1}, \alpha_{1}\right),\left(\Gamma_{2}, \alpha_{2}\right), \ldots,\left(\Gamma_{i}, \alpha_{i}\right)\right\}$, and degree of the root vertex of Γ be l, $l \leq d$. Then

1. $|\operatorname{Aut} \Gamma|=\prod_{j=1}^{i}\left(\alpha_{j}\right)!\left|\operatorname{Aut}\left(\Gamma_{j}\right)\right|^{\alpha_{j}}, l \leq d$,
2. $\left|S t_{T_{k}^{(d)}}(\Gamma)\right|=(d-l)!\left|\operatorname{Aut} T_{k-1}^{(d)}\right|^{d-l} \prod_{j=1}^{i}\left(\alpha_{j}\right)!\left|S t_{T_{k-1}^{(d)}}\left(\Gamma_{j}\right)\right|^{\alpha_{j}}$,
3. $\left.\left|F i x_{T_{k}^{(d)}}(\Gamma)=(d-l)!\right| \operatorname{Aut} T_{k-1}^{(d)}\right|^{d-l} \prod_{j=1}^{i}\left|F i x_{T_{k-1}^{(d)}}\left(\Gamma_{j}\right)\right|^{\alpha_{j}}$.

Proof.

1. Prove the proposition by induction on k. Let Γ be one-level tree and root vertex degree be $l \leq d$, then \mid Aut $\Gamma \mid=l$!.
Assume we know the orders of groups Aut Γ_{j} for all $j=1, \ldots, i$. Find the order of Aut Γ. Degrees of root vertices of isomorphic trees are equal. Let them be l. It is clear that types of all trees isomorphic to Γ are equal up to the permutation of items. Thus only permutation of the first level vertices, and consequently permutation of subtrees of Γ, distinguishes graph Γ from isomorphic one. All the vertices of the first level may permute, but with several restrictions, namely, roots of non-isomorphic subtrees stay roots of nonisomorphic subtrees. Since the orders of $\operatorname{Aut} \Gamma_{j}$ for all $j=1, \ldots, i$ are known, we can derive the order of Aut Γ :

$$
|\operatorname{Aut} \Gamma|=\prod_{j=1}^{i}\left(\alpha_{j}\right)!\left|A u t \Gamma_{j}\right|^{\alpha_{j}}
$$

2. The proof is analogous to the proof of the previous statement.

Consider the stabilizer of subtree Γ in the automorphisms group of the rooted tree $T_{1}^{(d)}$. Let the degree of the root of Γ be l. Then it is obvious that $\left|S t_{T_{1}^{(d)}}(\Gamma)\right|=l!(d-l)$!.
Assume now that we know the order of $S t_{T_{k-1}^{(d)}}(\Gamma)$. Let the degree of the root of Γ be l. Then $(d-l)$ vertices of the first level of Γ may permute and each of them is the root of $(k-1)$-level tree $T_{k-1}^{(d)}$. Among l vertices, as in proof of the previous statement, distinguish only vertices that are roots of isomorphic subtrees. Then

$$
\left|S t_{T_{k}^{(d)}}(\Gamma)\right|=(d-l)!\left|\operatorname{Aut} T_{k-1}^{(d)}\right|^{d-i} \prod_{j=1}^{i}\left(\alpha_{j}\right)!\left|S t_{T_{k-1}^{(d)}}\right|^{\alpha_{j}}\left(\Gamma_{j}\right)
$$

3. Taking into account that fixator of the subtree does not allow vertices permutation of this subtree, the proof is analogous to the proof of point 2 .

Proposition 6. The cardinality of the set of idempotents $E\left(D_{\Gamma}\right)$ of class D_{Γ} equals

$$
\left|E\left(D_{\Gamma}\right)\right|=\frac{(d!)^{\frac{1-d^{k}}{1-d}}}{\left|S t_{T_{k}^{(d)}}(\Gamma)\right|}
$$

Proof follows from one-to-one correspondence between the set of ranges of idempotents of D_{Γ} and the set $\operatorname{Aut} T_{k}^{(d)} / \operatorname{St}(\Gamma)$, and $\left|\operatorname{Aut} T_{k}^{(d)}\right|=$ $(d!)^{\frac{1-d^{k}}{1-d}}$.

Corollary 1. The number of \mathcal{R}-classes and the number of \mathcal{L}-classes containing in \mathcal{D}-class D_{Γ} is equal to

$$
\frac{\left(d!!^{\frac{1-d^{k}}{1-d}}\right.}{\left|S t_{k_{k}^{(d)}}^{(d)}\right|}
$$

Proof follows from the fact that in inverse semigroup every \mathcal{L}-class and every \mathcal{R}-class contains exactly one idempotent.

Corollary 2. The cardinality of \mathcal{H}-class containing in \mathcal{D}-class D_{Γ} is equal to \mid Aut $\Gamma \mid$.

Proof. Let $\sigma, \tau \in \operatorname{PAut} T_{k}^{(d)}$. Then $\sigma \mathcal{H} \tau$ if and only if $\operatorname{dom}(\sigma)=\operatorname{dom}(\tau)$ and $\operatorname{ran}(\sigma)=\operatorname{ran}(\tau)$. The statement is now obvious.

Corollary 3. $\left|D_{\Gamma}\right|=\left|E\left(D_{\Gamma}\right)\right|^{2}|A u t \Gamma|$.
Proof follows from corollaries 1 and 2.

References

[1] Meldrum, J.D.P., Wreath products of groups and semigroups, Longman, 1995.
[2] Petrich, M. Dense extensions of completely 0-simple semigroups, I.J.Reine Angew.Math., 1973, 258, pp.103-125.
[3] Houghton, C.H. Embedding inverse semigroups in wreath products. Glasgow Math.J., 1976, 17, pp.77-82.
[4] Ganyushkin, O. and Mazorchuk, V. The full finite inerse symmetric semigroup $\mathcal{I S} \mathcal{S}_{n}$, Preprint 2001:37, Chalmers University of Technology and Göteborg University, Göteborg, 2001.

Contact information
Ye. Kochubinska Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska st., 01033, Kyiv, Ukraine E-Mail: eugenia@univ.kiev.ua

Received by the editors: ????
and in final form ????.

[^0]: 2000 Mathematics Subject Classification: 20M18, 20M20, 05C05.
 Key words and phrases: Wreath product, finite inverse symmetric semigroup, rooted tree, partial automorphism.

