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Abstract. In this paper, we show that if S is an H-closed

topological semigroup and e is an idempotent of S, then eSe is

an H-closed topological semigroup. We give sufficient conditions

on a linearly ordered topological semilattice to be H-closed. Also

we prove that any H-closed locally compact topological semilattice

and any H-closed topological weakly U -semilattice contain mini-

mal idempotents. An example of countably compact topological

semilattice whose topological space is H-closed is constructed.

Introduction

In this paper, all topological spaces will be assumed to be Hausdorff. We
shall follow the terminology of [1, 2, 3, 4]. If A is a subset of a topological
space X, then by clX(A) we denote the closure of the set A in X and by
Int(A) the interior of A in X. By ω we denote the first infinite cardinal.

If S is a semigroup, then by E(S) we denote the subset of idempo-
tents of S. A topological space S that is algebraically a semigroup with a
continuous semigroup operation is called a topological semigroup. A topo-
logical inverse semigroup is a topological semigroup S that is algebraically
an inverse semigroup with the continuous inversion.
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A semilattice is a semigroup with a commutative idempotent semi-
group operation. A topological semilattice is a topological semigroup
which is algebraically a semilattice.

If E is a semilattice, then the semilattice operation on E determines
the partial order 6 on E:

e 6 f if and only if ef = fe = e.

This order is called natural. An element e of a semilattice E is called
minimal (maximal) if f 6 e (e 6 f) for f ∈ E implies f = e. For
elements e and f of a semilattice E we write e < f if e 6 f and e 6= f . A
semilattice E is called linearly ordered if the semilattice operation admits
a linear natural order on E.

Let S be a semilattice and e, q ∈ S. We denote ↓e = {f ∈ S | f 6 e},
↑e = {f ∈ S | e 6 f}. Obviously, if S is a topological semilattice then ↑e
and ↓e are closed subsets in S for any e ∈ S.

Let S be some class of topological semigroups. A semigroup S ∈ S

is called H-closed in S if S is a closed subsemigroup of any topological
semigroup T ∈ S which contains S as a subsemigroup. If S coincides
with the class of all topological semigroups, then the semigroup S is
called H-closed. The H-closed topological semigroups were introduced
by J. W. Stepp in [9], where they were called maximal semigroups. A
topological semigroup S ∈ S is called absolutely H-closed in the class S,
if any continuous homomorphic image of S into T ∈ S is H-closed in
S. If S coincides with the class of all topological semigroups, then the
semigroup S is called absolutely H-closed.

An algebraic semigroup S is called algebraically h-closed in S, if S with
discrete topology d is absolutely H-closed in S and (S, d) ∈ S. If S coin-
cides with the class of all topological semigroups, then the semigroup S is
called algebraically h-closed. Absolutely H-closed topological semigroups
and algebraically h-closed semigroups were introduced by J. W. Stepp
in [10], where they were called absolutely maximal and algebraic maxi-
mal, respectively.

J. W. Stepp [9] showed that any locally compact topological semi-
group is a dense subsemigroup of an H-closed topological semigroup.
O. V. Gutik and K. P. Pavlyk [5, 6] proved that a topological inverse
semigroup S is [absolutely] H-closed in the class of topological inverse
semigroups if and only if any topological Brandt λ-extension of S is
an [absolutely] H-closed semigroup in the class of topological inverse
semigroups. The topological Brandt λ-extensions which preserve the H-
closedness and the absolute H-closedness were constructed in [5, 8].

In [10] J. W. Stepp proved that a semilattice E is algebraically h-
closed if and only if any maximal chain in E is finite and he posed therein
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the question: Is any H-closed topological semilattice absolutely H-closed?
In [6] O. V. Gutik and K. P. Pavlyk remarked that a topological semi-
lattice is [absolutely] H-closed if and only if it is [absolutely] H-closed in
the class of topological semilattices. O. V. Gutik and D. Repovš [7] es-
tablished properties of linearly ordered H-closed topological semilattices
and showed that any linearly ordered H-closed topological semilattice is
absolutely H-closed. Also they constructed therein an example of a lin-
early ordered H-closed locally compact topological semilattice which is
not embedded into a compact topological semilattice.

In this paper, we show that if S is an H-closed topological semi-
group and e is an idempotent of S, then eSe is an H-closed topological
semigroup. We give sufficient conditions on a linearly ordered topologi-
cal semilattice to be H-closed. Also we prove that any H-closed locally
compact topological semilattice and any H-closed topological weakly U -
semilattice contain minimal idempotents. An example of countably com-
pact topological semilattice whose topological space is H-closed is con-
structed.

1. H-closed and absolutely H-closed

topological semigroups

Lemma 1.1. Let S be a dense subsemigroup of a topological semigroup
T and let e be a left (right) unity of S. Then e is a left (right) unity of
T .

Proof. Suppose, on the contrary, that e is not a left unity of the topolog-
ical semigroup T . Then there exists t ∈ T such that e · t 6= t. We put
a = e · t. Let W (a) and W (t) be open neighbourhoods of the points a
and t, respectively, such that W (a)∩W (t) = ∅. Since T is a topological
semigroup, there exist open neighbourhoods V (e) and V (t) of the points e
and t, respectively, such that V (t) ⊆ W (t) and V (e) ·V (t) ⊆ W (a). Since
S is a dense subsemigroup of T , there exists s ∈ S such that s ∈ V (t),
and hence e · s = s ∈ V (t) ⊆ W (t), a contradiction. Therefore e is a left
unity of T .

The proof in the case if e is a right unity of S is similar.

Theorem 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S. Then eSe = eS ∩ Se is an H-closed topological
semigroup.

Proof. Suppose the contrary, i.e., that T = eSe is not an H-closed topo-
logical semigroup. Then e is the unity of T and there exists a topological
semigroup G which contains T as a non-closed subsemigroup. Without
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loss of generality we can assume that clG(T ) = G. Then G \ T 6= ∅ and
by Lemma 1.1 e is the unity of G.

We define A = S∪G and extend the semigroup operation from S and
G onto A as follows:

x ·A y =















x · y, if x, y ∈ S;
x · y, if x, y ∈ G;
x · e · y, if x ∈ S and y ∈ G;
x · e · y, if x ∈ G and y ∈ S.

Let τS be the topology on S and τG be the topology on G. We define
a topology τA on A as follows: U ∈ τA if and only if U ∩ S ∈ τS and
U ∩ G ∈ τG. Obviously, (A, τA) is a Hausdorff topological space and the
semigroup operation “ ·A” on A is continuous.

Therefore S is a dense subsemigroup of the topological semigroup A,
a contradiction. The obtained contradiction implies the statement of the
theorem.

Corollary 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S such that ex = xe for all x ∈ eS ∪Se. Then eS = Se
is an H-closed topological semigroup.

Theorem 1.2. Let S be an H-closed topological semigroup and let x be a
regular element of S. If y is an inverse element to x then xSy = xS ∩Sy
is an H-closed topological semigroup.

Proof. By Lemma 1.13 [2], xSy = eS ∩ Se for an idempotent e = xy
of the semigroup S. Then Theorem 1.1 implies the statement of the
theorem.

Corollary 1.2. Let S be an H-closed regular topological semigroup and
let x and y be inverse elements of S, i.e. xyx = x and yxy = y. Then
xSy = xS ∩ Sy is an H-closed topological semigroup.

Since the band of a Clifford inverse semigroup S lies in the center of
S, Corollary 1.2 implies Corollaries 1.3 and 1.4 below.

Corollary 1.3. Let S be an H-closed Clifford inverse topological semi-
group (in the class of inverse topological semigroups) and x ∈ S. Then
xS is an H-closed inverse topological semigroup (in the class of inverse
topological semigroups).

Corollary 1.4. Let S be an H-closed Clifford topological inverse semi-
group (in the class of topological inverse semigroups) and x ∈ S. Then xS
is an H-closed topological inverse semigroup (in the class of topological
inverse semigroups).
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Theorem 1.3. Let S be an absolutely H-closed topological semigroup and
e be an idempotent of S such that ex = xe for all a ∈ S. Then eS is an
absolutely H-closed topological semigroup.

Proof. Suppose, on the contrary, that eS is not an absolutely H-closed
topological semigroup. Then there exists a topological semigroup T and
a continuous homomorphism h : eS → T such that h(eS) is not a closed
subsemigroup of T . Without loss of generality we can assume that h(eS)
is a dense subsemigroup of the topological semigroup T and T\h(eS) 6= ∅.
We define the map g : S → T as follows:

g(x) = h(ex) for all x ∈ S.

Then

g(s·t) = h(e · s·t) = h(e·e · s·t) = h(e·s · e·t) = h(e·s) · h(e·t) = g(s) · g(t)

for s, t ∈ S and hence g : S → T is a homomorphism. Moreover, g(x) =
h(x) for x ∈ eS and g(S) = h(eS). Therefore g(S) is a dense subsemi-
group of the topological semigroup T and T \ g(S) 6= ∅, a contradiction.
The obtained contradiction implies the statement of the theorem.

Corollary 1.5. Let S be an absolutely H-closed Clifford inverse topolog-
ical semigroup (in the class of inverse topological semigroups) and x ∈ S.
Then xS is an absolutely H-closed inverse topological semigroup (in the
class of inverse topological semigroups).

Proof. Since S is a Clifford inverse semigroup, xS = Sx for all x ∈ S and
there exists an idempotent e in S such that xS = eS. Then we apply
Theorem 1.3.

Similarly we get

Corollary 1.6. Let S be an absolutely H-closed Clifford topological in-
verse semigroup (in the class of topological inverse semigroups) and x ∈
S. Then xS is an absolutely H-closed topological inverse semigroup (in
the class of topological inverse semigroups).

2. H-closed topological semilattices

Proposition 2.1. Let (S, τS) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, τT ) and x ∈ T . Then the
set ↑x ∩ S contains a minimal idempotent.
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Proof. Suppose the contrary, i.e., that the set A = ↑x∩S does not contain
a minimal idempotent.

Since the topological semilattice is H-closed, for any idempotent x ∈
T \S there exists an open neighbourhood U(x) of x such that U(x)∩S =
∅. We define

A−(x) = {e ∈ T \ S | e < y for any y ∈ A}.

Therefore A−(x) is an open subset in T .
Let e0 /∈ T . On the set T ∗ = T ∪ {e0} we define the semigroup

operation as follows

t · e0 = e0 · t =







e0, if t = e0;
e0, if t ∈ ↑A;
t, if t ∈ ↓(A−(x)).

It is obvious that T ∗ with so defined semigroup operation is a linearly
ordered semilattice.

We define a topology τ∗ on T ∗ as follows:

1) the bases of the topologies τ∗ and τT at the point e ∈ T = T ∗ \{e0}
coincide;

2) the family
B(e0) = {Uf (e0) = [e0; f) | f ∈ A}

is a base of the topology τ∗ at the point e0 ∈ T ∗.

Obviously, the conditions (BP1)–(BP3) of [3] hold for the family B(e0)
and hence B(e0) is a base of a topology τ∗ at the point e0 ∈ T ∗.

Let p ∈ ↑e0 \ {e0}. Since the set A does not contain a minimal
idempotent there exists an idempotent f ∈ A such that e0 < f < p and
for an open neighbourhood Vf (p) = T ∗ \ ↓f of the point p in T ∗ we have

Vf (p) · Uf (e0) ⊆ Uf (e0).

Also for any idempotent f ∈ A we have

Uf (e0) · Uf (e0) ⊆ Uf (e0).

Let q ∈ P = ↓e0 \ {e0} ⊆ T ∗. Then P = T ∗ \ ↑e0 and P is an open
subset in T ∗. Hence for any open neighbourhood W (q) ⊆ P of q and for
any f ∈ A we have

W (q) · Uf (e0) ⊆ W (q).

Therefore (T ∗, τ∗) is a topological semilattice and obviously (S, τS) is not
a closed a subsemilattice of (T ∗, τ∗), which contradicts the H-closedness
of the semilattice (S, τS). The obtained contradiction implies the state-
ment of the proposition.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.I. Chuchman, O. Gutik 35

The proof of Proposition 2.2 is similar to Proposition 2.1.

Proposition 2.2. Let (S, τS) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, τT ) and x ∈ T . Then the
set ↓x ∩ S contains a maximal idempotent.

Propositions 2.1 and 2.2 and Propositions 4 and 5 of [7] imply

Corollary 2.1. Let (S, τS) be an H-closed topological subsemilattice of
a linearly ordered topological semilattice (T, τT ). Then for any x ∈ T the
subsets ↑x ∩ S and ↓x ∩ S of T with induced semilattice operation are
H-closed topological semilattices.

Let C be a maximal chain of a topological semilattice E. Then C =
⋂

e∈C(↓e ∪ ↑e), and hence C is a closed subsemilattice of E. Therefore
we get

Lemma 2.1. Let L be a linearly ordered subsemilattice of a topological
semilattice E. Then clE(L) is a linearly ordered subsemilattice of E.

A subsemilattice L of a linearly ordered semilattice S is called a L-
chain in S if ↑e ∩ ↓f ⊆ L for any e, f ∈ L, e 6 f .

Theorem 2.1. Let S be a linearly ordered topological semilattice and let L
be a subsemilattice of S such that L is an H-closed topological semilattice
and any maximal S \L-chain in S is an H-closed semilattice. Then S is
an H-closed semilattice.

Proof. Suppose, on the contrary, that the topological semilattice S is not
H-closed. Then there exists a topological semilattice T which contains
S as a non-closed subsemilattice. By Lemma 2.1, clT (S) is a linearly
ordered topological subsemilattice of T . Therefore without loss of gener-
ality we can assume that S is a dense subsemilattice of a linearly ordered
topological semilattice T .

Let x ∈ T \S. The conditions of the theorem imply that the set S \L
is a disjunctive union of maximal S \ L-chains Kα, α ∈ A, which are
H-closed semilattices. Therefore any open neighbourhood of the point x
intersects infinitely many sets Kα, α ∈ A.

Since any maximal S \ L-chain in S is an H-closed topological semi-
lattice, one of the following conditions hold:

↑x ∩ L 6= ∅ or ↓x ∩ L 6= ∅.

We consider the case when the sets ↑x∩L and ↓x∩L are not empty. The
proofs in the other cases are similar.
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By Proposition 2.1 the set ↑x ∩L contains a minimal idempotent em

and by Proposition 2.2 the set ↓x∩L contains a maximal idempotent eM .
Then the sets ↑em and ↓eM are closed in T and, obviously, L ⊂ ↓eM∪↑em.
Let U(x) be an open neighbourhood of the point x in T . We define

U0(x) = U(x) \ (↓eM ∪ ↑em) .

Then U0(x) is an open neighbourhood of the point x in T which intersects
at most one maximal S \ L-chain Kα, a contradiction.

Therefore S is an H-closed semilattice.

Corollary 2.2. Let S be a linearly ordered topological semilattice and let
L be a subsemilattice of S such that L is a compact topological semilattice
and any maximal S \ L-chain in S is a compact semilattice. Then S is
an H-closed semilattice.

Proposition 2.3. Every H-closed locally compact topological semilattice
contains a minimal idempotent.

Proof. Suppose the contrary, i.e., that there exists an H-closed locally
compact topological semilattice (E, τE) which does not contain a minimal
idempotent. Let a /∈ S. We put E∗ = E ∪ {a} and define the semilattice
operation on T as follows:

x · y =

{

xy, if x, y ∈ S;
a, if {x, y} ∋ a.

The topology τ∗ on E∗ is defined as follows. Let B(x) be a base
of the topology τE at the point x ∈ E. Then for any x ∈ E we put
B∗(x) = B(x) to be the base of the topology τ∗ at x ∈ E∗ \ {a}.

Let x ∈ E. We define

BC(x) = {U ∈ B(x) | clE(U) is a compact subset of E}.

Then by Proposition VI-1.13(iii) [4], ↑U is an open subset in E for every
U ∈ B(x) and by Proposition VI-1.6(ii) [4], ↑ clE(V ) is a closed subset in
E for any V ∈ BC(x).

We put

B
∗(a) = {V ∗(a) = {a} ∪

(

E \ ↑ clE(V )
)

| V ∈ BC(x), x ∈ E}.

Obviously, the conditions (BP1)–(BP3) of [3] hold for the family B∗(a)
and hence B∗(a) is a base of a topology τ∗ at the point a ∈ E∗. Since
for any x ∈ E there exists V ∈ BC(x) such that V ∩ V ∗(a) = ∅, the
topological space (E∗, τ∗) is Hausdorff.
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For any x ∈ E and V ∈ BC(x) we have V ∗(a) · V ∗(a) ⊆ V ∗(a) and
V · V ∗(a) ⊆ V ∗(a), and hence (E∗, τ∗) is a topological semilattice which
contains E as a dense subsemilattice. This is a contradiction to the H-
closedness of E. The obtained contradiction implies the statement of the
proposition.

A topological semilattice L is called the U -semilattice if for every
idempotent e ∈ L and for any open neighbourhood U(e) of e there exists
an idempotent ye ∈ U(e) such that e ∈ Int (↑ye) [1].

A topological semilattice L is called the weak U -semilattice if for
every idempotent e ∈ L there exists an idempotent ye ∈ L such that
e ∈ Int (↑ye). Obviously, every topological U -semilattice is a weak U -
semilattice. Proposition 2.3 implies that any locally compact H-closed
topological semilattice is a weak U -semilattice.

Proposition 2.4. Every H-closed topological weak U -semilattice con-
tains a minimal idempotent.

Proof. Suppose, on the contrary, that there exists an H-closed topological
weak U -semilattice (S, τS) which does not contain a minimal idempotent.
Let e /∈ S. We define T = S ∪ {e} and extend the semilattice operation
from S onto T as follows

x · e = e · x = e · e = e for all x ∈ S.

Obviously, T with so defined binary operation is a semilattice and e is
zero of T .

We define a topology τT on T such that τT |S = τS in the following
way. For any x ∈ S ⊂ T the bases of topologies τT and τS at the point x
coincide.

Since (S, τS) is a weak U -semilattice, for any idempotent x ∈ S there
exists an idempotent yx ∈ S such that x ∈ Int (↑yx). We put

Ux(e) = S \ (↑yx)

and define

B(e) = {Ux(e) | x ∈ S}.

Evidently, the conditions (BP1)–(BP3) of [3] hold for the family B(e)
and hence B(e) is a base of a topology τT at the point e ∈ T . Obviously,
Ux(e) ∩ S is open subset of S for every idempotent x ∈ S. Since for any
open neighbourhood U(x) of an arbitrary idempotent x ∈ S we have

(U(x) ∩ Int (↑yx)) ∩ Ux(e) = ∅,
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(T, τT ) is a Hausdorff topological space.
For every idempotent x ∈ S and any its open neighbourhood U(x)

we have

(U(x) ∩ Int (↑yx)) · Ux(e) ⊆ Ux(e) and Ux(e) · Ux(e) ⊆ Ux(e)

and therefore (T, τT , ·) is a topological semilattice.
Since the topological semilattice (S, τS) does not contain a minimal

idempotent, (S, τS) is a dense subsemilattice of (T, τT , ·). This contra-
dicts the H-closedness of (S, τS). The obtained contradiction implies the
statement of the proposition.

Theorem 1.1 implies

Corollary 2.3. Let S be an H-closed topological semilattice and e ∈ S.
Then eS is an H-closed topological semilattice.

Theorem 1.3 implies

Corollary 2.4. Let S be an absolutely H-closed topological semilattice
and e ∈ S. Then eS is an absolutely H-closed topological semilattice.

O. Gutik and D. Repovš in [7] constructed an example of a countable
metrizable locally compact H-closed topological semilattice which is not
embeddable into a compact topological semilattice.

Example 2.1 shows that there exists a countably compact topologi-
cal semilattice, whose space is H-closed. Also this example shows that
there exists a countably compact zero-dimensional scattered topological
semilattice which is not embeddable into a locally compact topological
semilattice.

Example 2.1. Let X = [0, ω1) with the order topology and semilattice
operation x · y = max{x, y}. On Y = {0} ∪ { 1

n
| n ∈ N} with natural

topology we define the semilattice operation as follows: x ·y = max{x, y}
for all x, y ∈ Y . Let S = X × Y with the product topology τp and
the product operation. We extend the semilattice operation onto S∗ =
S ∪ {α}, where α /∈ S, as follows: α · α = x · α = α · x = α for all
x ∈ S, and define a topology τ as follows. The bases of topologies τ
and τp at the point x ∈ S coincide and at the point α ∈ S∗ the family
B(α) = {U(α) | α ∈ ω1} is the base of the topology τ , where

U(α) = {α} ∪
(

[0, ω1) \ [0, α]
)

×
(

{0} ∪ {1/n | n ∈ N}
)

.

It is obvious that (S∗, τ) is a topological semilattice. Moreover, Propo-
sition 3.12.5 [3] implies that (S∗, τ) is an H-closed countably compact
zero-dimensional scattered non-regular topological space.
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