Variety of Jordan algebras in small dimensions

Iryna Kashuba

Communicated by I. P. Shestakov

Abstract

The variety \mathcal{J} or ${ }_{n}$ of Jordan unitary algebra structures on $\mathbf{k}^{n}, \mathbf{k}$ an algebraically closed field with char $\mathbf{k} \neq 2$, is studied, as well as infinitesimal deformations of Jordan algebras. Also we establish the list of GL_{n}-orbits on $\mathcal{J}^{\text {or }} n, n=4,5$ under the action of structural transport. The numbers jor $_{4}$ and $j^{\circ} r_{5}$ of irreducible components are 3 and 6 respectively; a list of generic structures is included.

1. Introduction

In his survey [1] of the classification theory of finite dimensional associative algebras E. Study gave a list of isomorphism classes of associative algebras up to dimension four. He considered all algebras of a given dimension as an algebraic variety and he showed that for associative algebras of dimension more than three it is impossible to find a generic algebra, or equivalently that corresponding variety has more than one irreducible components. In modern language the problem can be formulated as follows. Let \mathbf{k} be an algebraically closed field of characteristic $\neq 2, V$ an n-dimensional \mathbf{k}-vector space and $e_{1}, e_{2}, \ldots, e_{n}$ a basis of V. In order to endow V with the \mathbf{k}-algebra structure we specify n^{3} structure constants $c_{i j}^{k} \in \mathbf{k}$,

$$
e_{i} \cdot e_{j}=\sum_{k=1}^{n} c_{i j}^{k} e_{k} .
$$

Equivalently, an algebra structure on V is given by bilinear map, i.e. an element of $V^{*} \otimes V^{*} \otimes V$, which we consider together with its natural
structure of an algebraic variety over \mathbf{k}. Moreover for any class of algebras defined by identities, the corresponding multiplication maps form an algebraically closed subset $A l g_{n}$ of $V^{*} \otimes V^{*} \otimes V$. The linear group $\mathrm{GL}(V)$ operates on $A l g_{n}$ by so-called 'transport of structure' action, which is induced by the natural action of $\mathrm{GL}(V)$ on $V^{*} \otimes V^{*} \otimes V$

$$
\begin{equation*}
(g, \mathcal{J})(x, y) \rightarrow g \mathcal{J}\left(g^{-1} x, g^{-1} y\right) \tag{1.1}
\end{equation*}
$$

for any $\mathcal{J} \in A l g_{n}, g \in \operatorname{GL}(V)$ and $x, y \in V$. For any $\mathcal{J} \in A l g_{n}$ we denote by $\mathcal{J}^{\mathrm{GL}(V)}$ the orbit of \mathcal{J} under $\operatorname{GL}(V)$ and we can consider the inclusion diagram of the Zariski closure of orbits of elements in $A l g_{n}$. More precisely we define for $\mathcal{J}_{1}, \mathcal{J}_{2} \in A l g_{n}$ that \mathcal{J}_{1} deforms to \mathcal{J}_{2} if \mathcal{J}_{2} lies in the Zariski closure of the orbit of $\mathcal{J}_{1}\left(\mathcal{J}_{1} \rightarrow \mathcal{J}_{2}\right)$. Algebraic deformation theory was introduced for associative algebras by Gerstenhaber [2], [3], and was extended to Lie algebras by Nijenhius and Richardson [4]. The corresponding varieties of associative algebras Assoc $_{n}$ and of Lie algebras $L i e_{n}$ are of fundamental importance in the theory of algebra and their deformations. Flanigan in [9] referred to the study of $A s s o c_{n}$ as 'algebraic geography'.

The geometry of both $A s s o c_{n}$ and $L i e_{n}$ is rather complicated. It is known that the number of irreducible components increases exponentially with n [5], [6] and their dimensions are at most $\frac{4}{27} n^{3}+O\left(r^{8 / 3}\right)$ for Assoc $_{n}$ and $\frac{2}{27} n^{3}+O\left(r^{8 / 3}\right)$ for Lie $_{n}$ [6]. However, a complete description of the orbits and degeneration partial order is only known for $n \leq 5$ in associative case [5] and $n \leq 4$ for Lie algebras [7]. Many but not all components of $A s s o c_{n}$ are orbit closures [9]. An algebra \mathcal{J} such that the closure of $\mathcal{J}^{\mathrm{GL}(V)}$ is a component is called rigid. Every semisimple associative or Lie algebra is known to be rigid [2], [6].

In this paper we introduce the variety of Jordan unitary algebras $\mathcal{J} o r_{n}$. We extend some properties and facts mentioned above for $A s s o c_{n}$ and $L i e_{n}$ to the case of Jordan algebras. In Section 2, we consider infinitesimal deformations of Jordan algebras. We show that semisimple Jordan algebras are rigid and also prove analogue of the "straighteningout theorem" of Flanigan [10]. In Section 3, we define an algebraic variety \mathcal{J} or n_{n} and write down explicitly some routine properties as well as some invariants. Finally in Section 4, we will use them to establish the list of GL_{n}-orbits on \mathcal{J} or ${ }_{n}$ for $n=4,5$.

2. Infinitesimal deformations of Jordan algebras

Recall, that a Jordan k-algebra is an algebra \mathcal{J} with a multiplication".", satisfying the following relations for any $a, b \in \mathcal{J}$

$$
\begin{align*}
a \cdot b & =b \cdot a \\
((a \cdot a) \cdot b) \cdot a & =(a \cdot a) \cdot(b \cdot a) \tag{2.2}
\end{align*}
$$

In particular any commutative associative algebra is Jordan.
Let V be a vector space associated to \mathcal{J} and $K=\mathbf{k}((t))$ be the quotient field of the ring of formal series in one variable t. If we put $V_{K}=V \otimes_{\mathbf{k}} K$ then any bilinear function $f: V \times V \rightarrow V$, in particular a multiplication in \mathcal{J} can be extended to a function $V_{K} \times V_{K} \rightarrow V_{K}$. Let f_{t} be a bilinear function $V_{K} \times V_{K} \rightarrow V_{K}$ of the following for

$$
f_{t}(a, b)=a \cdot b+t F_{1}(a, b)+t^{2} F_{2}(a, b)+\ldots
$$

where each F_{i} is a bilinear function defined over \mathbf{k}. We suppose that f_{t} is a Jordan product i.e. it satisfies (2.2). We may consider the algebra $\mathcal{J}_{t}=\left(V_{K}, f_{t}\right)$ as the generic element of a 'one parameter family of deformations of \mathcal{J}^{\prime} as in [2]. The condition (2.2) for f_{t} is equivalent to having for all $a, b \in V$ and all $\nu=0,1,2$

$$
\begin{gather*}
F_{\nu}(a, b)=F_{\nu}(b, a) \\
\sum_{\substack{c \lambda+\mu+\gamma=\nu \\
\lambda>0 \mu>0 \\
\gamma>0}} F_{\gamma}\left(F_{\mu}(a, a), F_{\lambda}(b, a)\right)-F_{\gamma}\left(F_{\mu}\left(F_{\lambda}(a, a), b\right), a\right)=0 \tag{2.3}
\end{gather*}
$$

In particular for $\nu=0$ we obtain (2.2) for original multiplication and for $\nu=1$ the relations (2.3) could be written in the form:

$$
\begin{align*}
F_{1}\left(a^{2}, b \cdot a\right)-F_{1}\left(a^{2} \cdot b, a\right) & +a^{2} \cdot F_{1}(b, a)-F_{1}\left(a^{2}, b\right) \cdot a+ \\
+ & F_{1}(a, b) \cdot(b \cdot a)-\left(F_{1}(a, a) \cdot b\right) \cdot a=0 \tag{2.4}
\end{align*}
$$

Due to Theorem II.8.12, [8] any function satisfying (2.4) defines a null extension of a Jordan algebra \mathcal{J} by Jordan bimodule \mathcal{J}, i.e. any such function is 2 -cocycle of Jordan algebra \mathcal{J} with coefficients in \mathcal{J}.

From [2], two one parameter families of the deformations f_{t} and g_{t} are called equivalent if $g_{t}(a, b)=\Phi_{t}^{-1} f_{t}\left(\Phi_{t} a, \Phi_{t} b\right)$, where Φ_{t} is an automorphism of V_{K} of the form:

$$
\begin{equation*}
\Phi_{t}(x)=x+t \phi_{1}(x)+t^{2} \phi_{2}(x)+\ldots \tag{2.5}
\end{equation*}
$$

Moreover if $g_{t}(a, b)=a \cdot b+t G_{1}(a, b)+\ldots$ and f_{t} and g_{t} are equivalent then $G_{1}(a, b)=F_{1}(a, b)+a \cdot \phi_{1}(b)+b \cdot \phi_{1}(a)-\phi_{1}(a \cdot b)$. If g_{t} is equivalent to $f_{t}(x, y)=x \cdot y$ it is called a trivial deformation. It is obvious that the obtained algebra $\mathcal{J}_{t}=\left(V_{K}, g_{t}\right)$ is isomorphic to $\mathcal{J} \otimes_{\mathbf{k}} K$.

Proposition 2.1. Any one-parameter family f_{t} of deformations of \mathcal{J} is equivalent to $g_{t}(a, b)=a \cdot b+t^{n} F_{n}(a, b)+t^{n+1} F_{n+1}(a, b)+\ldots$, with $F_{n}(a, b)$ being the non-split extension of \mathcal{J} by Jordan bimodule \mathcal{J}.

Proof. Let $f_{t}(a, b)=a \cdot b+t^{n} F_{n}(a, b)+\ldots$. Writing (2.3) for $\nu=n$ we obtain that F_{n} defines null extension of \mathcal{J} by \mathcal{J}. Suppose that F_{n} corresponds to split extension, i.e. as in [8], II. $8 \quad F_{n}(a, b)=\phi(a \cdot b)-$ $\phi(a) \cdot b-a \cdot \phi(b)$ for some $\phi: \mathcal{J} \rightarrow \mathcal{J}$. Choosing $\Phi_{t}(a)=a+t^{n} \phi(a)$ we obtain that

$$
\Phi_{t}^{-1} f_{t}\left(\Phi_{t} a, \Phi_{t} b\right)=a b+t^{n+1} F_{n+1}(a, b)+\ldots
$$

Since

$$
\begin{gathered}
f_{t}\left(\Phi_{t} a, \Phi_{t} b\right)=f_{t}\left(a+t^{n} \phi(a), b+t^{n} \phi(b)\right)=f_{t}(a, b)+t^{n} f_{t}(\phi(a), b)+t^{n}(a, \phi(b)) \\
\quad+t^{2 n} f_{t}(\phi(a), \phi(b))=a b+t^{n} F_{n}(a, b)+t^{n} \phi(a) b+t^{n} a \phi(b)+t^{n+1}(\ldots)
\end{gathered}
$$

and

$$
\Phi_{t}\left(a b+t^{n+1} F_{n+1}(a, b)+\ldots\right)=a b+t^{n} \phi(a b)+t^{n+1}(\ldots)
$$

As we already mentioned in the introduction that one of the important problems in geometric classification is to describe rigid algebras (i.e. algebras which have only trivial deformations). Using last result we obtain the following class of rigid algebras.

Corollary 2.2. If any null extension of \mathcal{J} by \mathcal{J} is split then \mathcal{J} is rigid.
In particular, from [12] follows that any semisimple Jordan algebra is rigid. Indeed, in this case the set of equivalence classes of null extension of \mathcal{J} by any Jordan bimodule M is trivial, in other words any extension is split.

Finally let us discuss the structure of the deformed algebra \mathcal{J}_{t} and compare it with that of \mathcal{J} (or to be precise, with that of \mathcal{J}_{K}). Any finite dimensional Jordan algebra admits Levi-Maltsev decomposition $\mathcal{J}=\mathcal{S}(\mathcal{J})+\operatorname{Rad} \mathcal{J}$, where $\mathcal{S}(\mathcal{J})$ is a semisimple subalgebra of \mathcal{J} and $\operatorname{Rad} \mathcal{J}$ its radical. If f_{t} is the generic element of a one parameter family of deformation of \mathcal{J} then, as in [9], one can construct a deformation equivalent to the given one such that the new deformation preserves the original multiplication in $\mathcal{S}\left(\mathcal{J}_{K}\right)$ as well as action of $\mathcal{S}\left(\mathcal{J}_{K}\right)$ on $\operatorname{Rad} \mathcal{J}$. Indeed, suppose that we are given the generic element of a one parameter family of deformations of \mathcal{J} algebra \mathcal{J}_{t} given by multiplication $f_{t}(x, y)=x y+t F_{1}(x, y)+t^{2} F_{2}(x, y) \ldots$.

Theorem 2.3. There exists a one parameter family of deformations of \mathcal{J} with the generic element $g_{t}(x, y)$ which is equivalent to f_{t} such that the radical of algebra $\mathcal{J}_{t}=\left(V_{K}, g_{t}\right)$ is $\operatorname{Rad} \mathcal{J}_{t}=R \otimes_{k} K$, where R is a nilpotent ideal in \mathcal{J}. Moreover, for all $x, y \in \mathcal{S}\left(\mathcal{J}_{K}\right) g_{t}(x, y)=x \cdot y$ and for all $x \in \mathcal{S}\left(\mathcal{J}_{K}\right), z \in \operatorname{Rad} \mathcal{J}_{K} \quad g_{t}(x, z)=x \cdot z$.
Proof. First we consider a k-basis of $\operatorname{Rad}\left(\mathcal{J}_{t}, f_{t}\right)=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{r}\right\}$. We can always choose $\xi_{i}=z_{i}+a_{1}^{i} t+a_{2}^{i} t^{2}+\ldots$ with $z_{i}, a_{k}^{i} \in \mathcal{J}$ such that z_{1}, \ldots, z_{r} are linearly independent. Moreover, by definition we can choose ξ_{i} in a such way that z_{i} are \mathbf{k}-linearly independent. Indeed, if for any $\xi \in \operatorname{Rad} \mathcal{J}_{t} \quad \xi=z+t(\ldots)$ we always can write a linear combination $z=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\ldots \alpha_{s} z_{s}$ for some $s<r$ then

$$
\left.\operatorname{Rad} \mathcal{J}_{t} \ni t^{-1}\left(\xi-\alpha_{1} \xi_{1}-\ldots \alpha_{k} \xi_{k}\right)=b+t(.) .\right)
$$

and b is again a linear combination of z_{1}, \ldots, z_{s}. Repeating it we obtain that any ξ is a linear combination of ξ_{1}, \ldots, ξ_{s} what contradicts to the fact that $\operatorname{dim} \operatorname{Rad}\left(f_{t}\right)=r>k$. Since ξ_{i} belongs to the radical $\operatorname{Rad}\left(\mathcal{J}_{t}, f_{t}\right), z_{i}$ also generates a nilpotent ideal and in particular z_{i} belongs to the radical $\operatorname{Rad} \mathcal{J}$. Now extend z_{1}, \ldots, z_{r} to a \mathbf{k}-basis of \mathcal{J} and define Φ_{t} in \mathcal{J}_{K} in the form $i d+t \phi_{1}+\ldots$ such that $\Phi_{t}\left(\xi_{i}\right)=z_{i}$. The multiplication $\Phi_{t} \cdot f_{t} \cdot\left(\Phi_{t}^{-1} \times \Phi_{t}^{-1}\right)$ satisfies the first part of the theorem.

To prove the second part we introduce a deformation of the homomorphism, as in [9]. If $f: A \rightarrow B$ is a homomorphism of associative algebras then a deformation of f is given by K-algebra homomorphism $f_{t}: A_{K} \rightarrow B_{K}$ in the form $f_{t}=f+t F_{1}+t^{2} F_{2}+\ldots$ with $F_{i}: A \rightarrow B$ \mathbf{k}-linear. The deformations f_{t} is called trivial if there exists an automorphism $\beta_{t}: B_{K} \rightarrow B_{K}$ such that $f_{t}=\beta_{t} \cdot f$. We say that f is rigid if all the deformation of f_{t} are trivial.

Further, for any Jordan algebra \mathcal{I} we denote by $U(\mathcal{I})$ its universal enveloping algebra. The associative algebra $U(\mathcal{I})$ is a factor algebra of the associative free algebra $F(\mathcal{I})$ by the ideal generated by right multiplication maps $R_{a}, a \in \mathcal{I}$, see [8], II.8. We define an application: $g: U(\mathcal{S}(\mathcal{J})) \otimes U(\mathcal{S}(\mathcal{J})) \rightarrow \operatorname{End}(U(\mathcal{J})), g\left(x, x^{\prime}\right)(y)=x * y * x^{\prime}$ for all $x, x^{\prime} \in U(\mathcal{S}(\mathcal{J}))$ and $y \in U(\mathcal{J})$, where $U(\mathcal{S}(\mathcal{J})), U(\mathcal{J})$ are universal enveloping algebras for $\mathcal{S}(\mathcal{J})$ and \mathcal{J} respectively and $*$ is a multiplication in $U(\mathcal{J})$. Now we consider the universal enveloping algebra $U\left(\mathcal{J}_{t}\right)$ of \mathcal{J}_{t} with multiplication

$$
m(a, b)=t^{-r} F_{-r}(a, b)+\cdots+F_{0}(a, b)+t F_{1}(a, b)+\ldots,
$$

for $a, b \in U\left(\mathcal{J}_{t}\right)$. The multiplication in associative free algebra $F\left(\mathcal{J}_{t}\right)$ is \mathbf{k}-linear therefore for elements of $\mathcal{J} F_{i}$ is 0 for $i<0$. Using \mathbf{k} linearity we obtain that $m(a, b)=a * b+t F_{1}(a, b)+\ldots$. Finally we define
$g_{t}: U\left(\mathcal{S}\left(\mathcal{J}_{t}\right)\right) \otimes U\left(\mathcal{S}\left(\mathcal{J}_{t}\right)\right) \rightarrow \operatorname{End}\left(U\left(\mathcal{J}_{t}\right)\right), g_{t}\left(w, w^{\prime}\right)(v)=m\left(m(w, v), w^{\prime}\right)$ for all $w, w^{\prime} \in U\left(\mathcal{S}\left(\mathcal{J}_{t}\right)\right.$) and $v \in U\left(\mathcal{J}_{t}\right)$. The homomorphism g_{t} is a deformation of g. On the other hand $U(\mathcal{S}(\mathcal{J})$) is a semisimple algebra and therefore from [10] it follows that g_{t} must be trivial. Therefore we obtain an automorphism $\beta_{t}: U\left(\mathcal{J}_{t}\right) \rightarrow U\left(\mathcal{J}_{t}\right)$ such that $g_{t}=\beta_{t} \cdot g$ which induce a K-linear automorphism Ω_{t} of \mathcal{J}_{K} in the form $\Omega_{t}(x)=$ $x+t \omega_{1}(x)+\ldots$ such that the composition $\Omega_{t}^{-1} \cdot f_{t} \cdot\left(\Omega_{t} \times \Omega_{t}\right)$ satisfies the second part of the theorem. We denote this multiplication by g_{t}.

Roughly speaking, this theorem proves that the radical of \mathcal{J}_{K} shrinks under deformation to that of \mathcal{J}_{t} while a semisimple part of \mathcal{J}_{t} contains semisimple part of \mathcal{J}_{K} and absorb part of its radical. In particular, remark that the dimension of the radical does not increase under deformation.

3. Algebraic variety \mathcal{J} or r_{n}

As we already mentioned in introduction, \mathcal{J} or ${ }_{n}$ is an algebraic subvariety in affine space $\mathbb{A}^{n^{3}} \simeq V^{*} \otimes V^{*} \otimes V$. For any chosen set of structure constants $c_{i j}^{k} \in \mathbf{k}$ the product defined by it defines a Jordan algebra if it satisfies the identities (2.2), i.e.

$$
\begin{gather*}
c_{i j}^{k}=c_{j i}^{k} \\
\sum_{a=1}^{n} c_{i j}^{a} \sum_{b=1}^{n} c_{k l}^{b} c_{a b}^{p}-\sum_{a=1}^{n} c_{k l}^{a} \sum_{b=1}^{n} c_{j a}^{b} c_{i b}^{p}+\sum_{a=1}^{n} c_{l j}^{a} \sum_{b=1}^{n} c_{k i}^{b} c_{a b}^{p}- \\
\sum_{a=1}^{n} c_{k i}^{a} \sum_{b=1}^{n} c_{j a}^{b} c_{l b}^{p}+\sum_{a=1}^{n} c_{k j}^{a} \sum_{b=1}^{n} c_{i l}^{b} c_{a b}^{p}-\sum_{a=1}^{n} c_{i l}^{a} \sum_{b=1}^{n} c_{j a}^{b} c_{k b}^{p}=0 \tag{3.6}
\end{gather*}
$$

for all $i, j, k, l, p \in\{1,2, \ldots, n\}$. The first one guaranties that the product is commutative and the second one provided by linearization of Jordan identity. Moreover, since we consider only unitary algebras we can choose e_{1} as the identity element of \mathcal{J}. In addition to (3.6) last condition translates into

$$
\begin{equation*}
c_{1 i}^{j}=c_{i 1}^{j}=\delta_{i j} \quad i, j=1, \ldots, n \tag{3.7}
\end{equation*}
$$

Equations (3.7) and (3.6) cut out an algebraic variety \mathcal{J} or ${ }_{n}$ in $\mathbf{k}^{n^{3}}=$ $V^{*} \otimes V^{*} \otimes V$. A point $\left(c_{i j}^{k}\right) \in \mathcal{J}$ or r_{n} represents n-dimensional unitary \mathbf{k}-algebra \mathcal{J}, along with a particular choice of basis (which gives the structural constants $c_{i j}^{k}$). A change of basis in \mathcal{J} gives rise to a possible different point of \mathcal{J} or r_{n} or equivalently $\mathrm{GL}(V)$ operates on $A l g_{n}$. The set of different $\mathrm{GL}(V)$-orbits of this action is in one-to-one correspondence with the isomorphism classes of n-dimensional Jordan algebras. Recall from the introduction that \mathcal{J}_{1} is called a deformation of \mathcal{J}_{2}
$\left(\mathcal{J}_{1} \rightarrow \mathcal{J}_{2}\right)$ if $\mathcal{J}_{2}^{G L(V)} \subset \mathcal{J}$ or r_{n} is contained in the Zariski closure of the orbit $\mathcal{J}_{1}^{G L(V)}$.

Lemma 3.1. If $\mathcal{J} \in \mathcal{J}$ or r_{n} and \mathcal{I} is a subvariety of \mathcal{J} or n_{n} then $\mathcal{J} \in \overline{\mathcal{I}}$ implies:

$$
n^{2}-\operatorname{dim}(\operatorname{Aut}(\mathcal{J})) \leq \operatorname{dim}(\mathcal{I})
$$

In particular for $\mathcal{J}_{1} \in \mathcal{J}$ or ${ }_{n}$ and $\mathcal{J} \rightarrow \mathcal{J}_{1}$ we have

$$
\operatorname{dim} \operatorname{Aut}(\mathcal{J}) \leq \operatorname{dim} \operatorname{Aut}\left(\mathcal{J}_{1}\right)
$$

Proof. From [13], p. 98 follows that $\operatorname{dim} \mathcal{I} \leq \operatorname{dim} \mathcal{J}^{G L(V)}$. To finish the proof use $\mathcal{J}^{G L(V)}=G L(V) / \operatorname{Aut}(\mathcal{J})$.

This lemma gives a partial order on the set of $G L$-orbits of Jordan algebras. The following lemma is the basic tool for construction of deformation between two algebras.

Lemma 3.2. If there exists a curve Γ in \mathcal{J} or n_{n} which generically lies in \mathcal{I} and which cuts $\mathcal{J}^{G L(V)}$ in special point than $\mathcal{J} \in \overline{\mathcal{I}}$.

The proof follows directly from the definition. To illustrate the lemma let us consider $\mathcal{J} o r_{2}$ the variety of unitary 2 -dimensional Jordan algebras. There are only two non-isomorphic unitary Jordan algebras in this dimension both are associative algebras $\mathcal{J}_{1}=\mathbf{k} \times \mathbf{k}$ and $\mathcal{J}_{2}=\mathbf{k}[x] / x^{2}$. We choose a basis e_{1}, e_{2} corresponding to primitive idempotents of \mathcal{J}_{1}. And consider the transformation $f_{1}=e_{1}+e_{2}$ and $f_{2}=t e_{2}$, for some parameter t. Then for any $t \in \mathbf{k}^{*}$ the new algebra \mathcal{J}^{\prime} is isomorphic to \mathcal{J}_{1}. For $t=0$ we get the following multiplication $f_{1}^{2}=f_{1}, f_{2}^{2}=t f_{2}=0$ and $f_{1} \cdot f_{2}=f_{2}$ which is \mathcal{J}_{2}. Hence $\mathcal{J}_{1} \rightarrow \mathcal{J}_{2}$, all algebras of \mathcal{J} or ${ }_{2}$ belong to the closure of $\mathcal{J}_{1}^{G L(V)}$ and therefore \mathcal{J} or r_{2} is irreducible subvariety of $\mathbb{A}_{\mathbf{k}}^{8}$ of dimension 4 . Let Comm_{n} denote the algebraic variety of commutative associative unitary algebras of dimension n. As we just showed $\mathcal{J o r}_{2}=$ Comm $_{2}$. In general, any commutative associative algebra is Jordan algebra and therefore Comm_{n} is a closed subvariety in \mathcal{J} or r_{n}. If $\mathcal{J}_{1} \in \mathcal{J}$ or r_{n} is associative algebra and $\mathcal{J}_{1} \rightarrow \mathcal{J}_{2}$ then \mathcal{J}_{2} is also associative.

Proposition 3.3. The following sets are closed in Zariski topology in \mathcal{J} or ${ }_{n}$:

1. $\quad\left\{\mathcal{J} \in \mathcal{J}\right.$ or $\left.r_{n} \mid \operatorname{dim} \operatorname{Rad} \mathcal{J} \geq s\right\}$
2. $\quad\left\{\mathcal{J} \in \mathcal{J}\right.$ or $\left.{ }_{n} \mid \operatorname{dim} \mathcal{J}^{\mathrm{m}} \geq s\right\}$
for all positive integers m, s.
Proof. The proof for the first set is given in [11]. To prove the second statement choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of algebra $\mathcal{J} \in \mathcal{J}$ or r_{n} and consider the set Ω of all commutative words of the length m in n variables $\left\{e_{1}, \ldots, e_{n}\right\}$. We denote by $P_{n, m}$ its cardinality. Any such word can be written

$$
w_{l}\left(e_{1}, \ldots, e_{n}\right)=f_{1}^{l} e_{1}+\cdots+f_{n}^{l} e_{n},
$$

where f_{i}^{l} is a polynomial in structure constants $c_{i j}^{k}$ of \mathcal{J}. Further let A be the matrix of dimension $P_{m, n} \times n$ where to every word from Ω corresponds the line $\left(f_{1}^{l}, \ldots, f_{n}^{l}\right) \cdot \operatorname{dim} \mathcal{J}^{m} \leq r$ The fact that $\operatorname{dim} \mathcal{J}^{m} \leq$ r is equivalent to the fact that all minors of degree $s+1$ are zeros, therefore we obtain a finite number of equations for structure constants and consequently the set defined by these identities is Zariski closed.

4. Varieties $\mathcal{J}^{\text {or }} 4$ and $\mathcal{J}^{\text {or }}{ }_{5}$

In this section we study the variety \mathcal{J} or r_{n} for $n=4,5$. Let Comm_{n} be a variety define by n-dimensional commutative associative algebras with the identity. Obviously, Comm_{n} is a closed subset in \mathcal{J} or n_{n} and therefore is affine subvariety of $\mathcal{J}^{\text {or }} n_{n}$. In [14] Mazzola proved that for $n \leq 6 \mathrm{Comm}_{n}$ is irreducible affine variety and its only component is a Zariski closure of the orbit of semisimple associative commutative algebra $\mathbf{k} \times \cdots \times \mathbf{k}$. Thus to complete a geometric classification for \mathcal{J} or ${ }_{n}$ for $n \leq 6$ it is enough to deal with non-associative algebras.

Example 4.1. Consider 3-dimensional unitary non-associative Jordan algebras. In fact, there are only two non-isomorphic non-associative Jordan algebras in $\mathcal{J}^{\text {or }} 3$: simple Jordan algebra $\mathcal{J}_{1}=\left\{e_{1}, e_{2}, a\right\}$ with e_{1}, e_{2} orthogonal idempotents and $e_{1} \cdot a=e_{2} \cdot a=\frac{1}{2} a, a^{2}=e_{1}+e_{2}$ and a Jordan algebra with one-dimensional radical $\mathcal{J}_{2}=\left\{e_{1}, e_{2}, a\right\}$ with the same multiplication table except for $a^{2}=0$. Consider the following transformation of $\mathcal{J}_{1}: f_{1}=e_{1}, f_{2}=e_{2}$ and $f_{3}=t a$. For $t=0$ we obtain the multiplication table of \mathcal{J}_{2} and therefore $\mathcal{J}_{1} \rightarrow \mathcal{J}_{2}$. Hence $\mathcal{J}_{\text {or }}^{3}$ consists of two irreducible components: one comes from Jordan associative algebra $\mathbf{k} \times \mathbf{k} \times \mathbf{k}$ and the other one comes from \mathcal{J}_{1}.

4.1. \mathcal{J} or $_{4}$

Let first \mathcal{J} be a 4 -dimensional Jordan algebra. From [15] we obtain the following list of non-isomorphic Jordan, non-associative unitary algebras of dimension 4. Here $c:=c_{1}+c_{2}$.

1. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=0$:

$\mathcal{J}_{1}=$| | c_{1} | c_{2} | a | c_{3} |
| :---: | :---: | :---: | :---: | :---: |
| c_{1} | c_{1} | 0 | $\frac{1}{2} a$ | 0 |
| c_{2} | 0 | c_{2} | $\frac{1}{2} a$ | 0 |
| a | $\frac{1}{2} a$ | $\frac{1}{2} a$ | c | 0 |
| c_{3} | 0 | 0 | 0 | c_{3} |

$\operatorname{dim} \operatorname{Aut} \mathcal{J}_{1}=1$
2. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=1$:

$$
\mathcal{J}_{3}=\begin{array}{c|cccc}
& c_{1} & c_{2} & c_{3} & b \\
\hline c_{1} & c_{1} & 0 & 0 & \frac{1}{2} b \\
c_{2} & 0 & c_{2} & 0 & \frac{1}{2} b \\
c_{3} & 0 & 0 & c_{3} & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0
\end{array}
$$

$$
\mathcal{J}_{4}=\begin{array}{c|cccc}
& c_{1} & c_{2} & a & b \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b \\
a & \frac{1}{2} a & \frac{1}{2} a & c & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0
\end{array}
$$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{3}=2
$$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{4}=4
$$

3. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=2$:
4. When $\operatorname{dim} \operatorname{Rad} \mathcal{J}=3$ all 4-dimensional Jordan unitary algebras are associative.

Theorem 4.2. The irreducible components of \mathcal{J} or 4_{4} are the Zariski closures of the orbits of algebras $\Omega=\left\{\mathcal{J}_{1}, \mathcal{J}_{2}\right\}$.

Proof. The proof consists of two parts. First, we show that any Jordan algebra \mathcal{J} from the above list is dominated by either algebra \mathcal{J}_{1} or \mathcal{J}_{2}. Second, we will show that both \mathcal{J}_{1} and \mathcal{J}_{2} are rigid. To show that $\mathcal{J}_{1} \rightarrow \mathcal{J}_{3}$ we construct transformation of \mathcal{J}_{1} as $C_{1 t}=c_{1}, C_{2 t}=c_{2}$,

$$
\begin{aligned}
& \mathcal{J}_{5}=\begin{array}{c|cccc}
& c_{1} & c_{2} & a & b \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & b \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 \\
b & b & 0 & 0 & 0
\end{array} \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{5}=3 \\
& \mathcal{J}_{5}=\begin{array}{c|cccc}
& c_{1} & c_{2} & a & b \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0
\end{array} \\
& \operatorname{dim} \operatorname{Aut} \mathcal{J}_{7}=6
\end{aligned}
$$

$C_{3 t}=c_{3}, A_{t}=t a$. Then it is clear that the structure constants of this basis specialize to those of \mathcal{J}_{3}. Analogously, $\mathcal{J}_{6} \rightarrow \mathcal{J}_{5}$ with $C_{1 t}=c_{1}$, $C_{2 t}=c_{2}, A_{t}=t a, B_{t}=b ; \mathcal{J}_{2} \rightarrow \mathcal{J}_{4}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}$, $A_{t}=a+b, B_{t}=t b ; \mathcal{J}_{4} \rightarrow \mathcal{J}_{7}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=t a$, $B_{t}=b$; and $\mathcal{J}_{1} \rightarrow \mathcal{J}_{6}$ with $C_{1 t}=c_{1}+c_{3}, C_{2 t}=c_{2}, A_{t}=t a, C_{3 t}=t^{2} c$.

The second part of the proof is trivial in this case since both \mathcal{J}_{1} and \mathcal{J}_{2} are semisimple and therefore rigid by Corollary 2.3.

Therefore we obtain that $\mathcal{J o r}_{4} \backslash \mathrm{Comm}_{4}$ is affine variety with 2 irreducible components. Finally, \mathcal{J} or 4_{4} consists of three irreducible components, two provided by non-associative Jordan semisimple algebra and one by the associative commutative semisimple algebra $\mathbf{k} \times \mathbf{k} \times \mathbf{k} \times \mathbf{k}$.

4.2. $\mathcal{J}^{\text {or }}{ }_{5}$

Now let \mathcal{J} be a 5 -dimensional Jordan unitary algebra. Again, from [15] we obtain the following list of non-associative Jordan unitary algebras of dimension 5. Here $c:=c_{1}+c_{2}$.

1. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=0$:

$$
\mathcal{J}_{1}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & c_{3} & c_{4} \\
\mathcal{J}_{1} & c_{1} & 0 & \frac{1}{2} a & 0 & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & c & 0 & 0 \\
c_{3} & 0 & 0 & 0 & c_{3} & 0 \\
c_{4} & 0 & 0 & 0 & 0 & c_{4} \\
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{1}=1
\end{array} \quad \begin{array}{ccccccc}
& \mathcal{J}_{2}=1 & c_{1} & c_{2} & a & b & c_{3} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & \frac{1}{2} c & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & \frac{1}{2} c & 0 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & c_{3} \\
& c_{1} & c_{2} & a & b & d \\
c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & c & 0 & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & c & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & c & \\
\operatorname{dim} & \text { Aut } \mathcal{J}_{3}=6 & & &
\end{array}
$$

2. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=1$:
3. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=2$:

$$
\mathcal{J}_{8}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & c_{3} & b \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & 0 & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & c_{3} & b \\
c_{4} & 0 & 0 & 0 & b & 0
\end{array} \quad \mathcal{J}_{9}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & c_{3} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & b & 0 & 0 \\
b & b & 0 & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & c_{3}
\end{array}
$$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{8}=3
$$

dim Aut $\mathcal{J}_{9}=2$

$$
\mathcal{J}_{10}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & c_{3} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 & 0 \\
b & b & 0 & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & c_{3}
\end{array}
$$

$$
\mathcal{J}_{11}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & c_{3} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & c_{3}
\end{array}
$$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{10}=3
$$

$$
\operatorname{dim} \text { Aut } \mathcal{J}_{11}=6
$$

$$
\mathcal{J}_{12}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & c_{3} & a & b \\
\hline c_{1} & c_{1} & 0 & 0 & \frac{1}{2} a & \frac{1}{2} b \\
c_{2} & 0 & c_{2} & 0 & \frac{1}{2} a & 0 \\
c_{3} & 0 & 0 & c_{3} & 0 & \frac{1}{2} b \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 & 0 \\
b & \frac{1}{2} b & 0 & \frac{1}{2} b & 0 & 0
\end{array}
$$

$$
\operatorname{dim} \mathrm{Aut}^{\mathcal{J}_{12}}=3
$$

4. $\operatorname{dim} \operatorname{Rad} \mathcal{J}=3$:

$$
\begin{aligned}
& \mathcal{J}_{13}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & \frac{1}{2} d \\
a & \frac{1}{2} a & \frac{1}{2} a & c & 0 & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & 0
\end{array} \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{13}=6
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{J}_{4}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & c_{3} & c_{4} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & 0 & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & 0 & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & c_{3} & 0 \\
c_{4} & 0 & 0 & 0 & 0 & c_{4}
\end{array} \\
& \operatorname{dim} \operatorname{Aut} \mathcal{J}_{4}=2 \\
& \mathcal{J}_{6}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & c_{3} \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & 0 \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & 0 \\
a & \frac{1}{2} a & \frac{1}{2} a & c & 0 & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & 0 & 0 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & c_{3}
\end{array} \\
& \operatorname{dim} \operatorname{Aut} \mathcal{J}_{6}=4 \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{5}=2 \\
& \mathcal{J}_{7}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & \frac{1}{2} a & \frac{1}{2} b & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & \frac{1}{2} a & \frac{1}{2} b & \frac{1}{2} d \\
a & \frac{1}{2} a & \frac{1}{2} a & 0 & \frac{1}{2} c & 0 \\
b & \frac{1}{2} b & \frac{1}{2} b & \frac{1}{2} c & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & 0
\end{array} \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{7}=7
\end{aligned}
$$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{15}=3
$$

$\mathcal{J}_{16}=$| | c_{1} | c_{2} | a | b | d |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c_{1} | c_{1} | 0 | a | 0 | $\frac{1}{2} d$ |
| c_{2} | 0 | c_{2} | 0 | b | $\frac{1}{2} d$ |
| a | a | 0 | 0 | 0 | 0 |
| b | 0 | b | 0 | 0 | 0 |
| d | $\frac{1}{2} d$ | $\frac{1}{2} d$ | 0 | 0 | $a+b$ |

dim Aut $\mathcal{J}_{16}=2$

$$
\operatorname{dim} \operatorname{Aut} \mathcal{J}_{16}^{(1,0)}=3
$$

$\operatorname{dim} \operatorname{Aut} \mathcal{J}_{16}^{0}=4$

dim Aut $\mathcal{J}_{18}=4$
$\operatorname{dim} \operatorname{Aut} \mathcal{J}_{15}^{0}=4$

$$
\mathcal{J}_{16}^{(1,0)}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & a & 0 & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & 0 & b & \frac{1}{2} d \\
a & a & 0 & 0 & 0 & 0 \\
b & 0 & b & 0 & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & a
\end{array}
$$

5. For $\operatorname{dim} \operatorname{Rad} \mathcal{J}=4$ all Jordan algebras are associative commutative.

The geometric classification in this case is the following:

$$
\begin{aligned}
& \mathcal{J}_{14}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & a & b & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & 0 & 0 & \frac{1}{2} d \\
a & a & 0 & 0 & 0 & 0 \\
b & b & 0 & 0 & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & a
\end{array} \quad \mathcal{J}_{14}^{0}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & a & b & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & 0 & 0 & \frac{1}{2} d \\
a & a & 0 & 0 & 0 & 0 \\
b & b & 0 & 0 & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & 0
\end{array} \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{14}=4 \\
& \operatorname{dim} \text { Aut } \mathcal{J}_{14}^{0}=5 \\
& \mathcal{J}_{15}^{0}=\begin{array}{c|ccccc}
& c_{1} & c_{2} & a & b & d \\
\hline c_{1} & c_{1} & 0 & a & b & \frac{1}{2} d \\
c_{2} & 0 & c_{2} & 0 & 0 & \frac{1}{2} d \\
a & a & 0 & b & 0 & 0 \\
b & b & 0 & 0 & 0 & 0 \\
d & \frac{1}{2} d & \frac{1}{2} d & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Theorem 4.3. The irreducible components of $\mathcal{J}^{\text {or }}{ }_{5}$ are the Zariski closures of the orbits of algebras: $\Omega=\left\{\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}, \mathcal{J}_{18}, \mathcal{J}_{12}\right\}$.

Proof: Again, we show that for any Jordan algebra \mathcal{J} from the above list exist an algebra $\tilde{\mathcal{J}} \in \Omega$ such that $\tilde{\mathcal{J}}$ is a deformation of \mathcal{J}.

First, we establish deformations in the above list of algebras by constructing transformations which specialize the structural constant of one algebra into another one.

1. $\mathcal{J}_{1} \rightarrow \mathcal{J}_{4}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}, C_{4 t}=c_{4}, A_{t}=t a$;
2. $\mathcal{J}_{1} \rightarrow \mathcal{J}_{5}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}+c_{4}, C_{4 t}=t c_{4}$, $A_{t}=a ;$
3. $\mathcal{J}_{4} \rightarrow \mathcal{J}_{8}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}+c_{4}, C_{4 t}=t c_{4}$, $A_{t}=a ;$
4. $\mathcal{J}_{2} \rightarrow \mathcal{J}_{6}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}, A_{t}=a+b$, $B_{t}=t a+b ;$
5. $\mathcal{J}_{6} \rightarrow \mathcal{J}_{11}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}, A_{t}=t a, B_{t}=b ;$
6. $\mathcal{J}_{3} \rightarrow \mathcal{J}_{7}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=\frac{1}{2} a+b, B_{t}=\frac{1}{2} a-b i$, $D_{t}=t d$;
7. $\mathcal{J}_{7} \rightarrow \mathcal{J}_{13}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=a+b, B_{t}=t a-b i$, $D_{t}=d$;
8. $\mathcal{J}_{9} \rightarrow \mathcal{J}_{10}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, C_{3 t}=c_{3}, A_{t}=t a, B_{t}=b$;
9. $\mathcal{J}_{14} \rightarrow \mathcal{J}_{14}^{0}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=a, B_{t}=b, D_{t}=t d$;
10. $\mathcal{J}_{15} \rightarrow \mathcal{J}_{15}^{0}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=a, B_{t}=b, D_{t}=t d$;
11. $\mathcal{J}_{16} \rightarrow \mathcal{J}_{16}^{1,0}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=t^{2} a, B_{t}=b$, $D_{t}=t d$;
12. $\mathcal{J}_{16}^{1,0} \rightarrow \mathcal{J}_{16}^{0}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=a, B_{t}=b, D_{t}=t d$;
13. $\mathcal{J}_{18} \rightarrow \mathcal{J}_{19}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=a, B_{t}=b, D_{t}=t d$;
14. $\mathcal{J}_{15} \rightarrow \mathcal{J}_{14}$ with $C_{1 t}=c_{1}, C_{2 t}=c_{2}, A_{t}=t a, B_{t}=b, D_{t}=d$;
15. $\mathcal{J}_{1} \rightarrow \mathcal{J}_{16}$ with $C_{1 t}=c_{1}+c_{3}, C_{2 t}=c_{2}+c_{4}, A_{t}=t a, C_{3 t}=t^{2} c_{1}$, $C_{4 t}=t^{2} c_{2}$;
16. $\mathcal{J}_{1} \rightarrow \mathcal{J}_{9}$ with $C_{1 t}=c_{1}+c_{3}, C_{2 t}=c_{2}, A_{t}=t a, C_{3 t}=t^{2} c_{1}+c_{2}$, $C_{4 t}=c_{4} ;$
17. $\mathcal{J}_{9} \rightarrow \mathcal{J}_{17}$ with $C_{1 t}=c_{1}+c_{3}, C_{2 t}=c_{2}, A_{t}=a+c_{1}, B_{t}=b$, $C_{3 t}=c_{3}+t b$.

Now we prove that each algebra in Ω has only trivial transformations. First, we observe that it suffices to consider only deformation between non-associative algebras. Further, since $\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}$ are semisimples, they are rigid by Corollary 2.2. As the dimension of the radical does not increase under deformation we get that $\mathcal{J}_{1}, \mathcal{J}_{2}$ are the only candidates to deform into \mathcal{J}_{12} e \mathcal{J}_{18}. But \mathcal{J}_{12} can not be deformed in \mathcal{J}_{1}, for \mathcal{J}_{1} contain a associative subalgebra of dimension 4. By Theorem (2.3) the algebra \mathcal{J}_{12} could not be deformed in \mathcal{J}_{2} since the action of semisimple part of radical is preserved under deformation. Finally, the algebra \mathcal{J}_{18} is quadratic when both \mathcal{J}_{1} and \mathcal{J}_{2} are not.

We obtain that $\mathcal{J}^{\text {or }}{ }_{5} \backslash$ Comm $_{5}$ is an affine algebraic variety consisting of 5 irreducible components. Then \mathcal{J} or r_{5} is an algebraic variety with six irreducible components, each of them is the closure of one of the Jordan algebras from $\{\mathbf{k} \times \mathbf{k} \times \mathbf{k} \times \mathbf{k} \times \mathbf{k}, \Omega\}$.

5. Acknowledgments

The author is very grateful to her supervisor Prof. I. Shestakov for introducing this subject and many helpful discussions. The author was supported by the Fundação de Amparo á Pesquisa do Estado de São Paulo (99/12223-5).

References

[1] E. Study Ueber Systeme complexer Zahlen und ihre Anwendung in der Theorie der Transformationsgruppen, Monatsh. f. Math. I. (1890), 283-355.
[2] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79, (1964), 59-103.
[3] M. Gerstenhaber, On the deformation of rings and algebras. II, Ann. Math. (2) 84, (1966), 1-19.
[4] A. Nijenhuis, R. Richardson, Commutative algebra cohomology and deformations of Lie and associative algebras, J. Algebra 9, (1968), 42-105.
[5] G. Mazzola, The algebraic and geometric classification of associative algebras of dimension 5, Manuscripta Math. 27, (1979), 81-101.
[6] Yu. Neretin, An estimate for the number of parameters defining an n-dimensional algebra, Izv.Acad.Nauk SSSR Ser. Mat. 51, (1987), 306-318.
[7] D. Burde, C. Steinhoff, Classification of orbit closures of 4-dimensional complex Lie algebras, J. Algebra 214, (1999) 729-739.
[8] N. Jacobson, Structure and representations of Jordan algebras, AMS Colloq. Publ. 39, AMS, Providence 1968.
[9] F. J. Flanigan, Algebraic geography: varieties of structure constants, Pacific J. Math. 27, (1968), 71-79.
[10] F. J. Flanigan, Straightening out and semi-regidity in associative algebra, Trans. Amer.Math.Soc. 138, (1969), 415-425.
[11] P. Gabriel, Finite representation type is open, proceedings of the international conference on representations of algebras, Carleton University, Ottawa, Ontario 1974, Lecture Notes in Mathematics 488, (1975), 132-155.
[12] N. Glassman, Cohomology of non-associative algebras, Doctoral Dissertation, Yale univ., New Haven, (1963).
[13] A. Borel, Linear algebraic groups, New York - Amsterdam: W. A. Benjamin, Inc., (1969) 398p.
[14] G. Mazzola, Hochschild-cocycles and generic finite schemes, Comment. Math. Helv. 55, (1980), 267-293.
[15] H. Wesseler, Der Klassification der Jordan-Algebren niedrider Dimension, Staatsexamensarbeit für das Lehramt am Gymnasium, Münster, (1978) 165p.
I. Kashuba Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matao 1010, São Paulo 05311-970, Brazil
E-Mail: kashuba@ime.usp.br

