On one-sided interval edge colorings of biregular bipartite graphs

Rafayel Ruben Kamalian

Abstract. A proper edge t-coloring of a graph G is a coloring of edges of G with colors $1, 2, \ldots, t$ such that all colors are used, and no two adjacent edges receive the same color. The set of colors of edges incident with a vertex x is called a spectrum of x. Any nonempty subset of consecutive integers is called an interval. A proper edge t-coloring of a graph G is interval in the vertex x if the spectrum of x is an interval. A proper edge t-coloring φ of a graph G is interval on a subset R_0 of vertices of G, if for any $x \in R_0$, φ is interval in x. A subset R of vertices of G has an i-property if there is a proper edge t-coloring of G which is interval on R. If G is a graph, and a subset R of its vertices has an i-property, then the minimum value of t for which there is a proper edge t-coloring of G interval on R is denoted by $w_R(G)$. We estimate the value of this parameter for biregular bipartite graphs in the case when R is one of the sides of a bipartition of the graph.

We consider undirected, finite graphs without loops and multiple edges. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. For any vertex $x \in V(G)$, we denote by $N_G(x)$ the set of vertices of a graph G adjacent to x. The degree of a vertex x of a graph G is denoted by $d_G(x)$, the maximum degree of a vertex of G by $\Delta(G)$.

For a graph G and an arbitrary subset $V_0 \subseteq V(G)$, we denote by $G[V_0]$ the subgraph of G induced by the subset V_0 of its vertices.

2010 MSC: 05C15, 05C50, 05C85.

Key words and phrases: proper edge coloring, interval edge coloring, interval spectrum, biregular bipartite graph.
Using a notation $G(X, Y, E)$ for a bipartite graph G, we mean that G
has a bipartition (X, Y) with the sides X, Y, and $E = E(G)$.

An arbitrary nonempty subset of consecutive integers is called an
interval. An interval with the minimum element p and the maximum
element q is denoted by $[p, q]$.

A function $\varphi : E(G) \to [1, t]$ is called a proper edge t-coloring of a
graph G, if all colors are used, and no two adjacent edges receive the same
color.

The minimum $t \in \mathbb{N}$ for which there exists a proper edge t-coloring of
a graph G is denoted by $\chi'(G)$ [26].

For a graph G and any $t \in [\chi'(G), |E(G)|]$, we denote by $\alpha(G, t)$ the
set of all proper edge t-colorings of G. Let

$$\alpha(G) \equiv \bigcup_{t=\chi'(G)} \alpha(G, t).$$

If G is a graph, $x \in V(G), \varphi \in \alpha(G)$, then let us set $S_G(x, \varphi) \equiv \{\varphi(e) / e \in E(G), e$ is incident with $x\}$.

We say that $\varphi \in \alpha(G)$ is persistent-interval in the vertex $x_0 \in V(G)$
of the graph G iff $S_G(x_0, \varphi) = [1, d_G(x_0)]$. We say that $\varphi \in \alpha(G)$ is
persistent-interval on the set $R_0 \subseteq V(G)$ iff φ is persistent-interval in
$\forall x \in R_0$.

We say that $\varphi \in \alpha(G)$ is interval in the vertex $x_0 \in V(G)$ of the graph
G iff $S_G(x_0, \varphi)$ is an interval. We say that $\varphi \in \alpha(G)$ is interval on the set
$R_0 \subseteq V(G)$ iff φ is interval in $\forall x \in R_0$.

We say that a subset R of vertices of a graph G has an i-property
iff there exists $\varphi \in \alpha(G)$ interval on R; for a subset $R \subseteq V(G)$ with an
i-property, the minimum value of t warranting existence of $\varphi \in \alpha(G, t)$
interval on R is denoted by $w_R(G)$.

Notice that the problem of deciding whether the set of all vertices of
an arbitrary graph has an i-property is NP-complete [7, 8, 17]. Unfortu-
nately, even for an arbitrary bipartite graph (in this case the interest is
strengthened owing to the application of an i-property in timetablings
[6, 17]) the problem keeps the complexity of a general case [3, 12, 25]. Some
positive results were obtained for graphs of certain classes with numerical
or structural restrictions [9, 11, 13–15, 17, 19–22, 28, 29]. The examples of
bipartite graphs whose sets of vertices have not an i-property are given
in [6, 13, 16, 23, 25].

The subject of this research is a parameter $w_R(G)$ of a bipartite graph
$G = G(X, Y, E)$ in the case when R is one of the sides of the bipartition
of G (the exact value of this parameter for an arbitrary bipartite graph is not known as yet). We obtain an upper bound of the parameter being discussed for biregular [2–5, 24] bipartite graphs, and the exact values of it in the case of the complete bipartite graph $K_{m,n}$ ($m \in \mathbb{N}, n \in \mathbb{N}$) as well.

The terms and concepts that we do not define can be found in [27].

First we recall some known results.

Theorem 1 ([7, 8, 17]). If R is one of the sides of a bipartition of an arbitrary bipartite graph $G = G(X, Y, E)$, then: 1) there exists $\varphi \in \alpha(G, |E|)$ interval on R, 2) for $\forall t \in [w_R(G), |E|]$, there exists $\psi_t \in \alpha(G, t)$ interval on R.

Theorem 2 ([1, 7, 8]). Let $G = G(X, Y, E)$ be a bipartite graph. If for $\forall e = (x, y) \in E$, where $x \in X, y \in Y$, the inequality $d_G(y) \leq d_G(x)$ is true, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on X.

Corollary 1 ([1, 7, 8]). Let $G = G(X, Y, E)$ be a bipartite graph. If $\max_{y \in Y} d_G(y) \leq \min_{x \in X} d_G(x)$, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on X.

Remark 1. Note that Corollary 1 follows from the result of [10].

Let $H = H(\mu, \nu)$ be a $(0, 1)$-matrix with μ rows, ν columns, and with elements h_{ij}, $1 \leq i \leq \mu, 1 \leq j \leq \nu$. The i-th row of H, $i \in [1, \mu]$, is called collected, iff $h_{ip} = h_{iq} = 1, t \in [p, q]$ imply $h_{it} = 1$, and the inequality $\sum_{j=1}^{\nu} h_{ij} \geq 1$ is true. Similarly, the j-th column of H, $j \in [1, \nu]$, is called collected, iff $h_{pj} = h_{qj} = 1, t \in [p, q]$ imply $h_{ij} = 1$, and the inequality $\sum_{i=1}^{\mu} h_{ij} \geq 1$ is true. If all rows and all columns of H are collected, then for i-th row of H, $i \in [1, \mu]$, we define the number $\varepsilon(i, H) \equiv \min \{j/h_{ij} = 1\}$.

H is called a collected matrix (see Figure 1), iff all its rows and all its columns are collected, $h_{11} = h_{\mu\nu} = 1$, and $\varepsilon(1, H) \leq \varepsilon(2, H) \leq \cdots \leq \varepsilon(\mu, H)$.

H is called a b-regular matrix ($b \in \mathbb{N}$), iff for $\forall i \in [1, \mu], \sum_{j=1}^{\nu} h_{ij} = b$. H is called a c-compressed matrix ($c \in \mathbb{N}$), iff for $\forall j \in [1, \nu], \sum_{i=1}^{\mu} h_{ij} \leq c$.

Lemma 1 ([18]). If a collected n-regular ($n \in \mathbb{N}$) matrix $P = P(m, w)$ with elements p_{ij} ($1 \leq i \leq m, 1 \leq j \leq w$) is n-compressed, then $w \geq \left\lceil \frac{m}{n} \right\rceil \cdot n$.

Proof. We use induction on $\left\lceil \frac{m}{n} \right\rceil$.

If $\left\lceil \frac{m}{n} \right\rceil = 1$, the statement is trivial.
Now assume that $\left\lceil \frac{m}{n} \right\rceil = \lambda_0 \geq 2$, and the statement is true for all collected n'-regular n'-compressed matrixes $P'(m',w')$ with $\left\lceil \frac{m'}{n'} \right\rceil \leq \lambda_0 - 1$.

First of all let us prove that $\varepsilon(n + 1, P) \geq n + 1$. Assume the contrary: $\varepsilon(n + 1, P) \leq n$. Since P is a collected n-regular matrix, we obtain $\sum_{i=1}^{m} p_{in} \geq \sum_{i=1}^{n+1} p_{in} \geq n + 1$, which is impossible because $P(m, w)$ is an n-compressed matrix. This contradiction shows that $\varepsilon(n + 1, P) \geq n + 1$.

Now let us form a new matrix $P'(m - n, w - (\varepsilon(n + 1, P) - 1))$ by deleting from the matrix P the elements p_{ij}, which satisfy at least one of the inequalities $i \leq n$, $j \leq \varepsilon(n + 1, P) - 1$.

It is not difficult to see that $P'(m - n, w - (\varepsilon(n + 1, P) - 1))$ is a collected n-regular n-compressed matrix with $\left\lceil \frac{m-n}{n} \right\rceil = \lambda_0 - 1$. By the induction hypothesis, we have

$$w - (\varepsilon(n + 1, P) - 1) \geq \left\lceil \frac{m-n}{n} \right\rceil \cdot n,$$

which means that

$$w \geq (\lambda_0 - 1)n + \varepsilon(n + 1, P) - 1 \geq (\lambda_0 - 1)n + n = \lambda_0 n = \left\lceil \frac{m}{n} \right\rceil \cdot n. \quad \square$$

Now, for arbitrary positive integers m, l, n, k, where $m \geq n$ and $ml = nk$, let us define the class $Bip(m, l, n, k)$ of biregular bipartite graphs:

$$Bip(m, l, n, k) \equiv \left\{ G = G(X, Y, E) \mid \begin{array}{l} |X| = m, |Y| = n, \\
\text{for } \forall x \in X, d_G(x) = l, \\
\text{for } \forall y \in Y, d_G(y) = k. \end{array} \right\}$$

Remark 2. Clearly, if $G \in Bip(m, l, n, k)$, then $\chi'(G) = k$.
Theorem 3. If $G = G(X, Y, E) \in \text{Bip}(m, l, n, k)$, then $w_Y(G) = k$, $w_X(G) \leq l \cdot \left[\frac{m}{n} \right]$.

Proof. The equality follows from Remark 2. Let us prove the inequality.

Let $X = \{x_1, \ldots, x_m\}$. For $\forall r \in [1, \left\lceil \frac{m}{n} \right\rceil]$, define $X_r = \{x_{(r-1)l+1}, \ldots, x_{rl}\}$. Define $X_{1+\left\lceil \frac{m}{n} \right\rceil} = X \setminus \left(\bigcup_{i=1}^{\left\lceil \frac{m}{n} \right\rceil} X_i \right)$. For $\forall r \in [1, \left\lceil \frac{m}{n} \right\rceil]$, define $Y_r = \bigcup_{x \in X_r} N_G(x)$. Define $Y_{1+\left\lceil \frac{m}{n} \right\rceil} = \bigcup_{x \in X_{1+\left\lceil \frac{m}{n} \right\rceil}} N_G(x)$. For $\forall r \in [1, \left\lceil \frac{m}{n} \right\rceil]$, define $G_r \equiv G[X_r \cup Y_r]$.

Consider the sequence $G_1, G_2, \ldots, G_{\left\lceil \frac{m}{n} \right\rceil}$ of subgraphs of the graph G.

From Corollary 1, we obtain that for $\forall i \in [1, \left\lceil \frac{m}{n} \right\rceil]$, there is $\varphi_i \in \alpha(G_i, l)$ persistent-interval on X_i.

Clearly, for $\forall e \in E(G)$, there exists the unique $\xi(e)$, satisfying the conditions $\xi(e) \in [1, \left\lceil \frac{m}{n} \right\rceil]$ and $e \in E(G_{\xi(e)})$.

Define a function $\psi : E(G) \rightarrow [1, l \cdot \left\lceil \frac{m}{n} \right\rceil]$. For an arbitrary $e \in E(G)$, set $\psi(e) \equiv (\xi(e) - 1) \cdot l + \varphi_{\xi(e)}(e)$.

It is not difficult to see that $\psi \in \alpha(G, l \cdot \left\lceil \frac{m}{n} \right\rceil)$ and ψ is interval on X. Hence, $w_X(G) \leq l \cdot \left[\frac{m}{n} \right]$.

\(\square\)

Theorem 4. Let R be an arbitrary side of a bipartition of the complete bipartite graph $G = K_{m,n}$, where $m \in \mathbb{N}$, $n \in \mathbb{N}$. Then

$$w_R(G) = (m + n - |R|) \cdot \left\lceil \frac{|R|}{m + n - |R|} \right\rceil.$$

Proof. Without loss of generality we can assume that G has a bipartition (X, Y), where $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_n\}$, and $m \geq n$.

Case 1. $R = Y$. In this case the statement follows from Theorem 3; thus $w_Y(G) = m$.

Case 2. $R = X$.

The inequality $w_X(G) \leq n \cdot \left\lceil \frac{m}{n} \right\rceil$ follows from Theorem 3. Let us prove that $w_X(G) \geq n \cdot \left\lceil \frac{m}{n} \right\rceil$.

Consider an arbitrary proper edge $w_X(G)$-coloring φ of the graph G, which is interval on X.

Clearly, without loss of generality, we can assume that

$$\min(S_G(x_1, \varphi)) \leq \min(S_G(x_2, \varphi)) \leq \ldots \leq \min(S_G(x_m, \varphi)).$$

Let us define a $(0, 1)$-matrix $P(m, w_X(G))$ with m rows, $w_X(G)$ columns, and with elements $p_{ij}, 1 \leq i \leq m, 1 \leq j \leq w_X(G)$. For $\forall i \in [1, m]$, and for $\forall j \in [1, w_X(G)]$, set

$$p_{ij} = \begin{cases} 1, & \text{if } j \in S_G(x_i, \varphi) \\ 0, & \text{if } j \not\in S_G(x_i, \varphi) \end{cases}.$$
It is not difficult to see that \(P(m, w_X(G)) \) is a collected \(n \)-regular \(n \)-compressed matrix. From Lemma 1, we obtain \(w_X(G) \geq n \cdot \lceil \frac{m}{n} \rceil \). □

From Theorems 1 and 3, taking into account the proof of Case 2 of Theorem 4, we also obtain

Corollary 2. If \(G \in Bip(m, l, n, k) \), then

1) for \(\forall t \in \left[l \cdot \left\lfloor \frac{m}{l} \right\rfloor, ml\right] \), there exists \(\varphi_t \in \alpha(G,t) \) interval on \(X \),

2) for \(\forall t \in [k, nk] \), there exists \(\psi_t \in \alpha(G,t) \) interval on \(Y \).

References

Contact Information

R. R. Kamalian
Institute for Informatics and Automation Problems of the National Academy of Sciences of RA, 0014 Yerevan, Republic of Armenia

E-Mail(s): rrkamalian@yahoo.com

Received by the editors: 17.12.2012
and in final form 10.02.2015.