© Journal "Algebra and Discrete Mathematics"

Modules whose maximal submodules have τ -supplements

Engin Büyükaşık

Communicated by R. Wisbauer

ABSTRACT. Let R be a ring and τ be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have τ -supplements. We give some characterizations of these modules in terms their certain submodules, so called τ -local submodules. For some certain preradicals τ , i.e. $\tau = \delta$ and idempotent τ , we prove that every maximal submodule of M has a τ -supplement if and only if every cofinite submodule of M has a τ -supplement. For a radical τ on R-Mod, we prove that, for every R-module every submodule is a τ -supplement if and only if $R/\tau(R)$ is semisimple and τ is hereditary.

1. Introduction

Throughout this paper, we assume that all rings are associative with identity and all modules are unital left modules. For a module M, by $N \subseteq M$ we shall mean that N is a submodule of M. A submodule $N \subseteq M$ is called small, denoted by $N \ll M$, if $N+L \neq M$ for all proper submodules L of M. A module M is called supplemented if for any submodule K of M there exists a submodule L of M such that M = K + L and $K \cap L \ll L$. In [2], τ -supplemented modules are defined as a proper generalization of supplemented modules, for an arbitrary preradical τ . Namely, a module M is called τ -supplemented if for any submodule K of M there exists a submodule L of M such that M = K + L and $K \cap L \subseteq \tau(L)$. Another generalization of supplemented modules are the modules M whose cofinite submodules (i.e. submodules U of M such that M/U is finitely

generated) have supplements (see, [1]). These modules are termed as cofinitely supplemented modules. A module M is cofinitely supplemented if and only if every maximal submodule of M has a supplement (see, [1, Theorem 2.8]). In [5], a module M is called cofinitely Rad-supplemented if every cofinite submodule U of M has a Rad-supplement in M. Cofinitely Rad-supplemented modules are characterized as those modules for which every maximal submodule has a Rad-supplement in M (see, [5, Theorem 3.7]). In light of these characterizations, we study the modules whose maximal submodules have τ -supplements for a preradical τ , and we call these modules \max maximally τ -supplemented. A module M is said to be cofinitely τ -supplemented if every cofinite submodule of M has a τ -supplement. From the definitions, it is clear that an R-module M is maximally (Rad-)supplemented if and only if every cofinite submodule of M has a (Rad-)supplement in M.

For the definitions and terminology used in this paper we refer to [6] and [8].

A module N is said to be *hollow* if each proper submodule of N is small in N. A module that has a largest proper submodule is said to be *local*. Clearly each local module is hollow. Hollow modules play an important role in the study of supplemented modules and their generalizations . As a generalization of hollow modules we define τ -local modules. Namely, we call a module N τ -local if either $\tau(N) = N$ or $\tau(N)$ is a maximal submodule of N.

The paper is organized as follows. In section 2, we characterize maximally τ -supplemented modules for arbitrary preradicals. First we prove some closure properties of these modules. Namely, we prove that maximally τ -supplemented modules are closed under homomorphic images and arbitrary sums. For any preradical τ , τ -supplements of maximal submodules are τ -local. This fact allows us to give some characterizations of maximally τ -supplemented modules in terms of τ -local submodules. For a module M if τ -local submodules of M are maximally τ -supplemented then, M is maximally τ -supplemented if and only if $M/Loc_{\tau}(M)$ has no maximal submodules, where $Loc_{\tau}(M)$ is the sum of all τ -local submodules of M.

In section 3 and section 4, we consider the cases when τ is idempotent and $\tau = \delta$. In these cases, we prove that τ -local modules are cofinitely τ -supplemented. Using this fact, we obtain that M is maximally τ -supplemented if and only if M is cofinitely τ -supplemented. As a consequence we show that, a finitely generated module is τ -supplemented if and only if it is a finite sum of τ -local modules.

In the last section, we deal with the modules whose all submodules are τ -supplements, for a radical τ . We prove that if for every module M the

submodule $\tau(M)$ is a supplement in M then τ is an idempotent radical. For a ring R we prove that, for each module $M \in \mathbb{R}$ -Mod every submodule of M is a τ -supplement in M if and only if $R/\tau(R)$ is semisimple and τ is hereditary.

Let R-Mod be the category of left R-modules. A functor $\tau: R\text{-Mod} \to R\text{-Mod}$ is said to be a preradical if $\tau(N) \subseteq N$ for each $N \in R\text{-Mod}$ and for each homomorphism $f: M \to M'$ in R-Mod, we have $f(\tau(M)) \subseteq \tau(M')$. A preradical τ is said to be radical if $\tau(N/\tau(N)) = 0$ for each $N \in R\text{-Mod}$.

2. Maximally τ -supplemented modules

In this section, unless otherwise stated, we assume that τ is a preradical on R-Mod. In order to give some characterizations of maximally τ -supplemented modules we begin with the following lemma.

Lemma 2.1. Let M be an R-module and let N be a maximally τ -supplemented submodule of M. If K is a maximal submodule of M such that K+N=M then K has a τ -supplement in M.

Proof. We have $N/(N\cap K)\simeq (K+N)/K=M/K$ is simple. Then $N\cap K$ is a maximal submodule of N and so $N\cap K$ has a τ -supplement, say L, in N by the hypothesis. That is, $N\cap K+L=N$ and $(N\cap K)\cap L=K\cap L\subseteq \tau(L)$. Also, $M=K+N=K+N\cap K+L=K+L$. Therefore L is a τ -supplement of K in M.

Lemma 2.2. Let N be a maximal submodule of a module M and L be a τ -supplement of N in M. Then L is a τ -local submodule of M.

Proof. Suppose $\tau(L) \neq L$. Since L is a τ -supplement of N in M we have M = N + L and $L \cap N \subseteq \tau(L)$. Now $L/(L \cap N) \simeq M/N$ is simple, and so $L \cap N$ is a maximal submodule of L. Therefore $L \cap N = \tau(L)$ i.e. $\tau(L)$ is a maximal submodule of L. Hence L is a τ -local submodule of M. \square

Proposition 2.3. Let M be an R-module. Suppose $M = \sum_{i \in I} N_i$, where I is an arbitrary index set and N_i is a maximally τ -supplemented submodule of M for each $i \in I$. Then M is a maximally τ -supplemented module.

Proof. Let K be a maximal submodule of M. Since K is a proper submodule of M, there exists $j \in I$ such that $N_j \nsubseteq K$. Then $K + N_j = M$, and so K has a τ -supplement in M by Lemma 2.1. Therefore M is a maximally τ -supplemented module.

Lemma 2.4. Let M be a module and L be a maximally τ -supplemented submodule of M. If M/L has no maximal submodules then M is maximally τ -supplemented.

Proof. Let K be a maximal submodule of M. Since M/L has no maximal submodules, we have K+L=M. Then $L/(L\cap K)\simeq M/K$ is simple, and so $L\cap K$ is a maximal submodule of L. Let L' be a τ -supplement of $L\cap K$ in L. Then $(L\cap K)+L'=L$ and $(L\cap K)\cap L'\subseteq \tau(L')$. Since M=K+L=K+L' and $K\cap L'\subseteq \tau(L')$, the submodule L' is a τ -supplement of K in M. Hence M is maximally τ -supplemented. \square

For a module M let $Loc_{\tau}(M)$ be the sum of all τ -local submodules of M.

Theorem 2.5. For an R-module M suppose τ -local submodules of M are maximally τ -supplemented. Then the following are equivalent.

- (1) M is maximally τ -supplemented.
- (2) $M/Loc_{\tau}(M)$ has no maximal submodules.
- (3) $M/\Lambda(M)$ has no maximal submodules, where $\Lambda(M)$ is the sum of maximally τ -supplemented submodules of M.
- *Proof.* (1) \Rightarrow (2) Let N be a maximal submodule of M such that $Loc_{\tau}(M) \subseteq N$. By the hypothesis, N has a τ -supplement L in M. By Lemma 2.2, L is τ -local, and so $L \subseteq Loc_{\tau}(M) \subseteq N$, a contradiction. This implies that $Loc_{\tau}(M)$ is not contained in any maximal submodule of M. This proves (2).
- $(2) \Rightarrow (3)$ By hypothesis and by Proposition 2.3, $Loc_{\tau}(M)$ is maximally τ -supplemented, and so $Loc_{\tau}(M) \subseteq \Lambda(M)$. Now the proof is obvious.
- (3) \Rightarrow (1) By Proposition 2.3, $\Lambda(M)$ is maximally τ -supplemented. Therefore M is maximally τ -supplemented by Lemma 2.4.

3. Idempotent preradicals

A preradical τ is said to be idempotent if $\tau(\tau(N)) = \tau(N)$ for each R-module N (see, [6, 6.4]). In this section, for an idempotent preradical τ , we shall characterize the modules whose maximal submodules have τ -supplements. We see that these modules coincide with the modules whose cofinite submodules have τ -supplements.

The following lemma is trivial, we include it for completeness.

Lemma 3.1. Let τ be a preradical and M be an R-module such that $\tau(M) = M$. Then M is τ -supplemented.

Proof. Let $K \subseteq M$. Then K + M = M and $K \cap M = K \subseteq \tau(M)$. That is M is a τ -supplement of K in M. Hence M is τ -supplemented. \square

Proposition 3.2. [2, 2.3(1)] Let L_1 , $U \subseteq L$ be submodules where L_1 is τ -supplemented. If $L_1 + U$ has a τ -supplement in L, then so does U.

Lemma 3.3. Arbitrary sum of cofinitely τ -supplemented modules is cofinitely τ -supplemented. That is, for an index set I, if $M = \sum_{i \in I} M_i$, where M_i is cofinitely τ -supplemented for each $i \in I$, then M is cofinitely τ -supplemented.

Proof. Similar to the proof of [1, Corollary 2.4]. \Box

Proposition 3.4. Let τ be an idempotent preradical and M be a τ -local module. Then M is τ -supplemented.

Proof. If $\tau(M) = M$ then M is τ -supplemented by Lemma 3.1. Suppose $\tau(M)$ is a maximal submodule of M and let U be a submodule of M. Now, we have either $U \subseteq \tau(M)$ or $M = U + \tau(M)$. If $U \subseteq \tau(M)$, then M is a τ -supplement of U in M. Suppose $U + \tau(M) = M$. Since τ is idempotent, $\tau(\tau(M)) = \tau(M)$, and hence $\tau(M)$ is τ -supplemented. So that U has a τ -supplement in M by Proposition 3.2.

Theorem 3.5. Let τ be an idempotent preradical and M be an R-module. The following are equivalent.

- (1) M is cofinitely τ -supplemented.
- (2) M is maximally τ -supplemented.
- (3) $M/Loc_{\tau}(M)$ has no maximal submodules.

Proof. (1) \Rightarrow (2) is clear. (2) \Rightarrow (3) By Proposition 3.4 and Theorem 2.5. (3) \Rightarrow (1)Let U be a cofinite submodule of M. Then $U + Loc_{\tau}(M)$ is also a cofinite submodule of M. If $U + Loc_{\tau}(M)$ is a proper submodule of M, then we get a maximal submodule containing $U + Loc_{\tau}(M)$ and hence containing $Loc_{\tau}(M)$. But this contradicts with the hypothesis. Hence we must have $U + Loc_{\tau}(M) = M$. Since U is a cofinite submodule of M, we have $M = U + T_1 + T_2 + \cdots + T_n$, where T_i is a τ -local submodule of M for each $i = 1, \ldots, n$. By Proposition 3.4, T_i is τ -supplemented for each $i = 1, \ldots, n$ and hence $T_1 + T_2 + \ldots + T_n$ is τ -supplemented by [2, 2.3(2)]. Then U has a τ -supplement in M by Proposition 3.2. Hence M is cofinitely τ -supplemented.

Since every submodule of a finitely generated module is cofinite, the notions of being τ -supplemented and being cofinitely τ -supplemented coincide for finitely generated modules. Hence we obtain the following by Theorem 3.5.

Corollary 3.6. For a finitely generated module M, the following are equivalent.

- (1) M is τ -supplemented.
- (2) Every maximal submodule of M has a τ -supplement.
- (3) $M = T_1 + T_2 + \ldots + T_n$ where T_i is τ -local for each $i = 1, \ldots, n$.

4. Generalized cofinitely δ -supplemented modules

In this section we shall consider the case $\tau = \delta$. We call an R-module M generalized (cofinitely) δ -supplemented if for every (cofinite) submodule U of M, there exists a submodule V of M such that U + V = M and $U \cap V \subseteq \delta(V)$. In this case, the submodule V is called a generalized δ -supplement of U in M.

Recall that a module M is said to be singular if $M \simeq L/K$ where L, K are R-modules and $K \subseteq L$, that is, $K \cap T \neq 0$ for each nonzero submodule $T \subset L$.

For a ring R, let \mathcal{P} be the class of all singular simple left R-modules. Then for an R-module M, as in [7],

$$\delta(M) = \bigcap \{ \operatorname{Ker} f \mid f \in \operatorname{Hom}(M, S), S \in \mathcal{P} \}.$$

A submodule N of a module M is said to be δ -small in M, denoted as $N \ll_{\delta} M$, if $N+L \neq M$ for any proper submodule L of M with M/L singular.

Lemma 4.1. [7, Lemma 1.2, Lemma 1.3] Let M be an R-module and $N, L \subseteq M$ then,

(1) A submodule $N \subseteq M$ is δ -small if and only if for all submodules $X \subseteq M$:

if
$$X + N = M$$
, then $M = X \oplus Y$

for a projective semisimple submodule Y with $Y \subseteq N$.

(2) $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.

Lemma 4.2. Let M be a δ -local module. Then M is cofinitely δ -supplemented.

Proof. If $\delta(M) = M$ then M is cofinitely δ -supplemented by Lemma 3.1. Suppose $\delta(M)$ is a maximal submodule of M. Let U be a cofinite submodule of M. Since $\delta(M)$ is a maximal submodule of M, we have

either $U \subseteq \delta(M)$ or $U + \delta(M) = M$. First suppose $U \subseteq \delta(M)$. In this case, clearly M is a δ -supplement of U in M. Now, suppose $U + \delta(M) = M$. Then there exist δ -small submodules L_1, L_2, \ldots, L_n of M such that $U + L_1 + \ldots + L_n = M$. By Lemma 4.1(2), the submodule $N = L_1 + \ldots + L_n$ is δ -small in M. So that by Lemma 4.1(1) there exists a submodule Y of N such that $M = U \oplus Y$. That is, Y is a δ -supplement of U in M. \square

From the proof of Lemma 4.2 we have the following.

Corollary 4.3. Let M be a δ -local module. Then every cofinite submodule of M has a generalized δ -supplement that is a direct summand.

In [5], for the case $\tau = \text{Rad}$ it is proved that a module M is maximally τ -supplemented if and only if every cofinite submodule of M has a τ -supplement. We have a similar characterization when $\tau = \delta$, as follows.

For a module M let $Loc_{\delta}(M)$ be the sum of all δ -local submodules of M.

Theorem 4.4. For an R-module M, the following are equivalent.

- (1) M is generalized cofinitely δ -supplemented.
- (2) M is maximally δ -supplemented.
- (3) $M/Loc_{\delta}(M)$ has no maximal submodules.
- (4) $M/\Lambda(M)$ has no maximal submodules, where $\Lambda(M)$ is the sum of maximally δ -supplemented submodules of M.

Proof. (1) \Rightarrow (2) is clear. (2) \Leftrightarrow (3) \Leftrightarrow (4) By Theorem 2.5. (3) \Rightarrow (1) Similar to the proof of Theorem 3.5.

Corollary 4.5. For a finitely generated module M, the following are equivalent.

- (1) M is generalized δ -supplemented.
- (2) Every maximal submodule of M has a generalized δ -supplement.
- (3) $M = D_1 + D_2 + \ldots + D_n$, where D_i is δ -local for each $i = 1, \ldots, n$.

5. When all submodules of a module are τ -supplements

Let τ be a radical on R-Mod and M be an R-module. Recall that a preradical τ is said to be *hereditary (or left exact)* if for any module N and $K \subseteq N$ we have $\tau(K) = K \cap \tau(N)$. Hereditary preradicals are idempotent (see, [6, 6.9 (1)]).

Proposition 5.1. [3, proposition 4.1]Let τ be radical and V be a τ -supplement submodule of M. Then $\tau(V) = V \cap \tau(M)$.

Theorem 5.2. Let τ be a radical on R-Mod. If $\tau(M)$ is a τ -supplement in M for every left R-module M, then τ is an idempotent radical.

Proof. Let N be an R-module. By hypothesis $\tau(N)$ is a τ -supplement in N. So that $\tau(\tau(N)) = N \cap \tau(N) = \tau(N)$ by Proposition 5.1. This implies that τ is idempotent. \square

Lemma 5.3. Let M be a module such that each submodule of M is a τ -supplement in M. Then $M/\tau(M)$ is semisimple.

Proof. Let $K/\tau(M)$ be a submodule of $M/\tau(M)$. By hypothesis K is a τ -supplement in M, that is, K+L=M and $K\cap L\subseteq \tau(K)$ for some submodule L of M. Then we have

$$M/\tau(M) = K/\tau(M) + (L + \tau(M))/\tau(M)$$

and

$$K/\tau(M) \cap (L + \tau(M))/\tau(M) = (K \cap L + \tau(M))/\tau(M) = 0.$$

That is, $K/\tau(M)$ is a direct summand of $M/\tau(M)$. Hence $M/\tau(M)$ is semisimple.

Theorem 5.4. For a ring R and a radical τ on R-Mod, the following are equivalent.

- (1) For each $M \in \mathbb{R}\text{-Mod}$, every submodule of M is a τ -supplement in M.
- (2) $R/\tau(R)$ is semisimple and τ is hereditary.

Proof. (1) \Rightarrow (2) By hypothesis every submodule of $_RR$ is a τ -supplement, so $R/\tau(R)$ is semisimple by Lemma 5.3. Let N be an R-module and $K \subseteq N$. Since K is a τ -supplement in N, we have $\tau(K) = K \cap \tau(N)$ by Proposition 5.1. Hence τ is hereditary by [6, 6.9.(1)].

 $(2)\Rightarrow (1)$ Since $\tau(R)M\subseteq \tau(M)$, the module $M/\tau(M)$ is an $R/\tau(R)$ -module. So that $M/\tau(M)$ is a semisimple $R/\tau(R)$ -module. Hence $M/\tau(M)$ is a semisimple R-module. Let K be a submodule of M. Since $M/\tau(M)$ is semisimple,

$$M/\tau(M) = [(K + \tau(M))/\tau(M)] \oplus L/\tau(M)$$

for some submodule $L \subseteq M$. That is, K + L = M and $K \cap L \subseteq \tau(M)$. Then $K \cap L \subseteq K \cap \tau(M) = \tau(K)$, by [6, 6.9.(1)(b)]. So that K is a τ -supplement of L in M. Hence every submodule of M is a τ -supplement in M.

Acknowledgments

The author would like to thank the referee for the valuable suggestions and comments.

References

- R. Alizade, G. Bilhan, P. F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29, 2001, 2389–2405.
- [2] Al-Takhman, K., Lomp, C., Wisbauer, R., τ-complemented and τ-supplemented modules, Algebra and Discrete Math., 3, 2006, 1–15.
- [3] E. Büyükaşık, E. Mermut, S. Özdemir, Rad-supplemented modules, Rendiconti del Seminario Matematico della Universita di Padova, 124, 157-177, 2010.
- [4] E. Büyükaşık, C. Lomp, When δ-semiperfect rings are semiperfect, Turkish J. Math., 34(3), 2010, 317-324.
- [5] E. Büyükaşık, C. Lomp, On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., 78(2), 2008, 317–325.
- [6] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
- [7] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium, 7:3, 2000, 305–318.
- [8] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.

CONTACT INFORMATION

E. Büyükaşık

Izmir Institute of Technology, Department of Mathematics, 35430, Urla, Izmir, Turkey *E-Mail:* enginbuyukasik@iyte.edu.tr

Received by the editors: 24.04.2010 and in final form 01.03.2011.