Algebra and Discrete Mathematics Volume 10 (2010). Number 1. pp. 104 – 111 © Journal "Algebra and Discrete Mathematics"

RESEARCH ARTICLE

George Szeto and Lianyong Xue

On separable group rings

Communicated by V. I. Sushchansky

ABSTRACT. Let G be a finite non-abelian group, R a ring with 1, and \overline{G} the inner automorphism group of the group ring RGover R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to $(RG)^H$ by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map.

1. Introduction

Galois extensions for rings and Hopf algebras have been intensively investigated ([3], [7], [8], [10], [11]) and many examples are constructed. In [8], the following question was asked: which Azumaya algebra with an automorphism group is also a Galois algebra? In [3], it was shown that any Azumaya projective group algebra RG_f over R is a central Galois algebra over R with an inner Galois group \overline{G} induced by the base elements $\{U_g | g \in G\}$ of RG_f where $f : G \times G \longrightarrow \{\text{units of } R\}$ is a factor set ([3], Theorem 3). Recently, this fact was generalized to any separable projective group algebra RG_f ([9]), and equivalent conditions were found for Galois separable skew polynomial rings and Galois crossed products with an inner

This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

²⁰⁰⁰ Mathematics Subject Classification: 16S35, 16W20.

Key words and phrases: Galois extensions, Galois algebras, separable extensions, group rings, group algebras.

Galois group ([6], [9]). The purpose of the present paper is to show that any separable group ring RG of a non-abelian group G is not a Galois extension of $(RG)^{\overline{G}}$ with an inner Galois group \overline{G} induced by the elements of G. Then we discuss the Galois map $\alpha : H \longrightarrow (RG)^H$ by conjugation from the set of subgroups H of G to the set of separable subalgebras of RG. Also, an equivalent condition is obtained for α being one-to-one and for a separable subalgebra of RG having a preimage, respectively. Moreover, it is shown that α is not onto.

2. Basic definitions and notations

Let *B* be a ring with 1 and *A* a subring of *B* with the same identity 1. Then *B* is called a separable extension of *A* if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., k$ for some integer $k\}$ such that $\sum a_i b_i = 1$ and $\sum x a_i \otimes b_i = \sum a_i \otimes b_i x$ for all *x* in *B* where \otimes is over *A*. In particular, *B* is called an Azumaya algebra if it is a separable extension over its center ([5], Introduction or [8], Definition 2.2). Let *G* be a finite automorphism group of *B* and $B^G = \{x \in B \mid g(x) = x \text{ for all } g \in G\}$. Then *B* is called a Galois extension of B^G with Galois group *G* if there exist elements $\{c_i, d_i \text{ in } B, i = 1, 2, ..., m$ for some integer *m*} such that $\sum c_i d_i = 1$ and $\sum c_i g(d_i) = 0$ for each $g \neq 1$ in *G*. A Galois extension *B* of B^G is called a Galois algebra if B^G is contained in the center of *B*, and a central Galois algebra if B^G is equal to the center of *B*. The order of a group *G* is denoted by |G|. Let *D* be a subring of *B*. We denote $V_B(D)$ the centralizer subring of *D* in *B* and $G(D) = \{g \in G \mid g(d) = d \text{ for all } d \in D\}$.

Let R be a ring with identity 1 and G a finite group. Then RG denotes the group ring of G over R, and RG_f a projective group ring with a factor set $f : G \times G \longrightarrow \{\text{units in the center of } R\}$ such that f(gh,l)f(g,h) = f(g,hl)f(h,l) if RG_f is a free R-module with a basis $\{U_g | g \in G\}$ such that $U_gU_h = f(g,h)U_{gh}$; in particular, when R is commutative, a projective group ring RG_f is called a projective group algebra.

3. Group rings of non-abelian groups

In this section, let R be a ring with 1, G a finite non-abelian group of order n for some integer n invertible in R, RG the group ring of G over R, and \overline{G} the inner automorphism group of RG over R induced by the elements of G. It is well known that RG is a separable extension of R. We shall show that the separable group ring RG over R is not a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} . There are two cases in the proof: (i) R

is commutative and (ii) R is noncommutative. We begin with a group algebra RG over a commutative ring R.

Theorem 1. Let RG be a group algebra of a finite non-abelian group over a commutative ring R and \overline{G} the inner automorphism group of RG over R induced by the elements of G. Then RG is not a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} .

Proof. Let k be the number of conjugate classes of G and Z the center of G. Then $\overline{G} \cong G/Z$ and |Z| < k < n for G is non-abelian where |Z| is the order of Z and n is the order of G. Let C_i be the sum of all distinct conjugate elements of the *i*th conjugate class of G for $i = 1, 2, \ldots, k$, and C the center of RG. Then it is known that $C = \sum_{i=1}^{k} RC_i$ which is a free R-module of rank k. Now assume that RG is a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} . Since $(RG)^{\overline{G}} = C$, RG is a central Galois algebra with an inner Galois group \overline{G} . Hence $RG = C\overline{G}_f$ which is a projective group algebra of \overline{G} over C with a factor set $f: \overline{G} \times \overline{G} \longrightarrow \{\text{units of } C\}$ ([2], Theorem 6). Thus $n = \text{rank}_R(RG) = \text{rank}_R(C\overline{G}_f) = \text{rank}_R(C) \cdot \text{rank}_C(C\overline{G}_f) = k \cdot |\overline{G}| > |Z| \cdot n/|Z| = n$. This is a contradiction. Thus RG is not a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} .

Next, we want to extend Theorem 1 to the case of a non-commutative ring R. Let R_0 be the center of R, C the center of RG, and Z the center of G. We first show some properties of \overline{G} .

Lemma 1. By keeping the notations in the above remarks, (1) the center of R_0G is C (the center of RG) and (2) the restriction of \overline{G} to R_0G is isomorphic to \overline{G} , that is, $\overline{G}|_{R_0G} \cong \overline{G}$.

Proof. (1) Let k be the number of conjugate classes of G and C_i the sum of all distinct conjugate elements of the *i*th conjugate class for i = 1, 2, ..., k. Then $C = V_{RG}(RG) = V_{\sum_{i=1}^{k} RC_i}(R) = \sum_{i=1}^{k} R_0 C_i$ = the center of $R_0 G$. (2) Since $\overline{G}|_{R_0 G} \cong G/Z \cong \overline{G}$, the statement holds.

The following lemma which is Theorem 2.1 in [13] will play an important role.

Lemma 2. Let B be a Galois extension of B^G with an inner Galois group $G, G = \{g \mid g(x) = U_g x U_g^{-1} \text{ for some } U_g \in B \text{ and for all } x \in B\}, \text{ and } C$ the center of B. Then $\sum_{g \in G} CU_g$ is a projective group algebra of G over C with a factor set $f : G \times G \longrightarrow \{\text{units of } C\}.$

Now, we extend Theorem 1 to a separable group ring RG.

Theorem 2. Let RG be a group ring of a non-abelian group G of order n invertible in R, R_0 the center of R, and C the center of RG. Then RG is not a Galois extension of $(RG)^{\overline{G}}$ with an inner Galois group \overline{G} induced by the elements of G.

Proof. Assume that RG is a Galois extension of $(RG)^{\overline{G}}$ with Galois group \overline{G} induced by the elements of G. Then, by Lemma 2, $\sum_{\overline{g}\in\overline{G}} C\overline{g} = C\overline{G}_f$ which is a projective group algebra of \overline{G} over C with factor set $f:\overline{G}\times\overline{G}\longrightarrow$ {units of C}. Since $\overline{G}\cong G/Z$ where Z is the center of $G, R_0G = \sum_{\overline{g}\in\overline{G}} R_0Zg \subset \sum_{\overline{g}\in\overline{G}} Cg \subset \sum_{\overline{g}\in\overline{G}} R_0Gg = R_0G$ by Lemma 1. Hence $R_0G = \sum_{\overline{g}\in\overline{G}} Cg = C\overline{G}_f$. By Lemma 1 again, the center of R_0G is C, so the center of $C\overline{G}_f$ is also C. Moreover, since the order n of G is invertible in $R, C\overline{G}_f$ is a separable C-algebra. Thus $C\overline{G}_f$ is an Azumaya C-algebra; and so $C\overline{G}_f$ is a central Galois algebra over C with an inner Galois group \overline{G} ([3], Theorem 3). Therefore the group algebra R_0G is a Galois algebra over C with an inner Galois group \overline{G} . This contradicts to Theorem 1, so RG is not a Galois extension of $(RG)^{\overline{G}}$ with an inner Galois group \overline{G} .

4. The Galois map

It is well known that the fundamental theorem holds for any indecomposable commutative ring Galois extension S with Galois group G ([1]), that is, the Galois map $\alpha : H \longrightarrow S^H$ for a subgroup H of G is a one-to-one correspondence between the set of subgroups of G and the set of separable subalgebras of S. Moreover, Galois extensions of a ring satisfying the fundamental theorem were studied in [12]. In this section, we shall discuss two questions of the Galois map for a non-Galois extension RG of $(RG)^G$, $\alpha : H \longrightarrow (RG)^H$ for a subgroup H of G where the action of H on RGis the conjugation by the elements in H: (1) when does $H = G((RG)^H)$ where $G((RG)^H) = \{g \in G \mid g(x) = x \text{ for each } x \in (RG)^H\}$, that is, is α one-to-one? (2) which separable subalgebra A of RG is $(RG)^{G(A)}$, that is, is α onto? For a subgroup H of G, let H act on G by conjugation and O_i be the sum of all distinct conjugate elements of the *i*th conjugate class of G under the action of H, for $i = 1, 2, \ldots, h$ where h is the number of conjugate classes of G under the action of H.

Lemma 3. By keeping the notations in the above remark, then $(RG)^H = \sum_{i=1}^{h} RO_i$.

Proof. Since H is a subgroup of G and $\{g \mid g \in G\}$ is a basis for RG over $R, (RG)^H = \sum_{i=1}^h RO_i$ by a direct computation.

Corollary 1. Let H and L be subgroups of G. If $(RG)^H = (RG)^L$, then (1) h = l, where h and l are the numbers of conjugate classes of G under the conjugation action of H and L respectively, and (2) $\{O_1, O_2, \ldots, O_h\} =$ $\{O'_1, O'_2, \ldots, O'_l\}$ where O_i is the sum of all distinct conjugate elements of the ith conjugate class of G under the action of H and O'_i is the sum of all distinct conjugate elements of the ith conjugate class of G under the action of L.

Proof. (1) By Lemma 3, $(RG)^H = \sum_{i=1}^h RO_i$ and $(RG)^L \neq \sum_{i=1}^l RO'_i$, so $\sum_{i=1}^h RO_i = (RG)^H = (RG)^L = \sum_{i=1}^l RO'_i$. Since RG is a free R-module with basis $\{g \mid g \in G\}, (RG)^H$ is a free R-module with basis $\{O_1, O_2, \ldots, O_h\}$ and $(RG)^L$ is a free R-module with basis $\{O'_1, \ldots, O'_l\}$. Thus h = l.

(2) Since $(RG)^H = (RG)^L$, for each i = 1, 2, ..., h, $O_i \in (RG)^L = \sum_{j=1}^l RO'_j$. Hence $O_i = \sum_{j=1}^l r_j O'_j$ for some $r_j \in R$. Noting that $\{g \mid g \in G\}$ is a basis for RG over R, we have that r_j is either 0 or 1. Thus $O_i = \sum_{j \in J_i} O'_j$ for some subset J_i of $\{1, 2, ..., l\}$. But $\{J_i \mid i = 1, 2, ..., h\}$ are disjoint subsets of $\{1, 2, ..., l\}$ where h = l, so each J_i contains only one O'_j , that is, $O_i = O'_j$ for some j. Therefore $\{O_1, O_2, ..., O_h\} = \{O'_1, O'_2, ..., O'_l\}$.

Now we show an equivalent condition for α being a one-to-one map: $(RG)^H = (RG)^L$ implies that H = L for subgroups H and L of G.

Theorem 3. Let H and L be subgroups of G. Then H = L if and only if $(RG)^H = (RG)^L$ and there exists an element $x \in G$ such that $V_H(x) = V_L(x) = V_{HL}(x)$ where $V_T(x)$ is the centralizer of x in T for a subset T of G.

Proof. (\Longrightarrow) Since H = L, the necessity is clear.

(\Leftarrow) Since $(RG)^H = (RG)^L$, we can assume that $O_i = O'_i$ for each i by Corollary 1. By hypothesis, there exists an element $x \in G$ such that $V_H(x) = V_L(x) = V_{HL}(x)$. Since x is a term of O_i for some i and $O_i = O'_i$, for any $a \in H$, $axa^{-1} = bxb^{-1}$ for some $b \in L$; and so $(b^{-1}a)x = x(b^{-1}a)$, that is, $b^{-1}a \in V_{HL}(x)$. But $V_L(x) = V_{HL}(x)$, so $b^{-1}a \in L$. Thus $a \in L$ for any $a \in H$. This implies that $H \subset L$. Similarly, $L \subset H$. Therefore H = L.

We recall that for a subset $S \subset RG$, the set $\{g \in G \mid g(s) = s \text{ for all } s \in S\}$ is denoted by G(S).

Corollary 2. Let H be a subgroup of G. Then $H = G((RG)^H)$ if and only if there exists an element $x \in G$ such that $V_{G((RG)^H)}(x) \subset V_H(x)$.

Proof. (\Longrightarrow) The necessity is clear.

(\Leftarrow) Since $(RG)^H = (RG)^{G((RG)^H)}$ and $H \subset G((RG)^H)$, the statement is an immediate consequence of Theorem 3.

Since the order of G is invertible in R, RG is a separable group algebra over R; and so it is an Azumaya algebra over its center ([4], Example III, page 41 and Theorem 3.8, page 55). We shall show which separable subalgebra A of the Azumaya algebra RG is equal to $(RG)^{G(A)}$.

Proposition 1. Assume the order of G is invertible in R. Then for any subgroup H of G, $(RG)^{H}$ is a separable R-subalgebra of RG.

Proof. Let |H| = n and $\operatorname{Tr}(x) = \sum_{g \in H} g(x) = \sum_{g \in H} gxg^{-1}$. Then the map $\pi : RG \longrightarrow (RG)^H$ by $\pi(x) = \operatorname{Tr}(n^{-1}x)$ is surjective as a bimodule homomorphism over $(RG)^H$. Hence π splits. Thus $(RG)^H$ is a direct summand of RG as a bimodule over $(RG)^H$. Since |G| is invertible in R, RG is a projective separable R-algebra. This implies that $(RG)^H$ is also a separable R-subalgebra by the proof of Theorem 3.8 in [4] on page 55. \Box

Theorem 4. Let C be the center of RG and A a separable subalgebra of the Azumaya algebra RG. Assume the order of G is invertible in R. Then $A = (RG)^{G(A)}$ if and only if $\operatorname{rank}_{C_p}(((RG)^{G(A)})_p) = \operatorname{rank}_{C_p}(A_p)$ for each prime ideal p of C.

Proof. (\Longrightarrow) The necessity is clear.

(⇐) Since RG is an Azumaya algebra over C, it is a finitely generated and projective C-module. Noting that A is a separable subalgebra of RG over C, we have that A is a direct summand of RG as an A-bimodule. Hence $RG = A \oplus A'$ for some A-bimodule A'; and so $\operatorname{rank}_{C_p}(A_p)$ is defined for each prime ideal p of C ([4], page 27). Moreover, since the order of G is invertible in R, the group algebra C(G(A)) of G(A) over C is a separable subalgebra of RG over C. Thus $V_{RG}(C(G(A)))$ is a separable subalgebra of RG over C by the commutator theorem for Azumaya algebras ([4], Theorem 4.3, page 57). But $V_{RG}(C(G(A))) = (RG)^{G(A)}$, so $(RG)^{G(A)}$ is a separable subalgebra of RG over C. Clearly, $A \subset (RG)^{G(A)}$, so $(RG)^{G(A)} = A \oplus (A' \cap (RG)^{G(A)})$ (for $RG = A \oplus A'$). By hypothesis, $\operatorname{rank}_{C_p}(((RG)^{G(A)})_p) =$ $\operatorname{rank}_{C_p}(A_p)$ for each prime ideal p of C, so $\operatorname{rank}_{C_p}((A' \cap (RG)^{G(A)})_p) = 0$ for each prime ideal p of C. Thus $A' \cap (RG)^{G(A)} = \{0\}$. Therefore $A = (RG)^{G(A)}$.

Next, we want to show that there are separable subalgebras of a group algebra RG of a non-abelian group G not satisfying Theorem 4, so the Galois map is not onto from the set of subgroups of G to the set of separable subalgebras of RG.

Theorem 5. Let RG be a group algebra of a non-abelian group G whose order is invertible in R. Then the Galois map $\alpha : H \longrightarrow (RG)^H$ for a subgroup H of G is not onto from the set of subgroups of G to the set of separable subalgebras of RG.

Proof. Let $g \neq e$ (the identity of G) and $R\langle g \rangle$ the subalgebra of RG generated by g. Since $|G|^{-1} \in R$, $R\langle g \rangle$ is a separable subalgebra of RG. By hypothesis, G is non-abelian, so $R\langle g \rangle$ is a proper separable subalgebra of RG. On the other hand, $G(R\langle g \rangle) = \{h \in G \mid hgh^{-1} = g\}$, so $G(R\langle g \rangle)$ is the commutator subgroup of $\langle g \rangle$ in G. Let $(RG)^{G(R\langle g \rangle)} = \bigoplus \sum_{i=1}^{k} O_i$ where k is the number of conjugate classes of G under the action of $G(R\langle g \rangle)$ and O_i is the sum of the distinct conjugate elements in the *i*th conjugate class of G under the action. Noting that each element in $\langle g \rangle$ is a conjugate class of G under the action of $G(R\langle g \rangle)$ and that $\langle g \rangle \neq G$, we have that $|\langle g \rangle| < k$. But $\operatorname{rank}_R(R\langle g \rangle) = |\langle g \rangle|$ = the order of $\langle g \rangle$ and $\operatorname{rank}_R((RG)^{G(R\langle g \rangle)}) = k =$ the number of conjugate classes of G under the action of $G(R\langle g \rangle)$ and that $\langle g \rangle \neq G$, we have that $|\langle g \rangle| < k$. But $\operatorname{rank}_R(R\langle g \rangle) = |\langle g \rangle|$ = the order of $\langle g \rangle$ and $\operatorname{rank}_R((RG)^{G(R\langle g \rangle)}) = k =$ the number of conjugate classes of G under the action of $G(R\langle g \rangle)$. Thus the separable subalgebra $R\langle g \rangle$ does not have a preimage of α ; and so the Galois map α is not onto.

We conclude the present paper with an example to show that the Galois map $\alpha: H \longrightarrow (RG)^H$ is one-to-one, but not onto.

Example 1. Let S_3 be the permutation group on 3 symbols $\{1, 2, 3, \}$, that is, $S_3 = \{e, (12), (13), (23), (123), (132)\}$, and R the field of real numbers. Then the group algebra RS_3 is not a Galois extension of $(RS_3)^{S_3}$ with an inner Galois group S_3 induced by the elements of S_3 , and $\alpha : H \longrightarrow (RS_3)^H$ is one-to-one from the set of subgroups of S_3 to the set of separable subalgebras of the Azumaya algebra RS_3 over its center C where

- (1) $C = Re \oplus R((12) + (13) + (23)) \oplus R((123) + (132)),$
- (2) $S_3 \cong \overline{S}_3$ = the inner automorphism group induced by the elements of S_3 ,
- $\begin{array}{l} (3) \ (RS_3)^{\langle e \rangle} = RS_3, \\ (RS_3)^{\langle (12) \rangle} = Re \oplus R(12) \oplus R((13) + (23)) \oplus R((123) + (132)), \\ (RS_3)^{\langle (13) \rangle} = Re \oplus R(13) \oplus R((12) + (23)) \oplus R((123) + (132)), \\ (RS_3)^{\langle (23) \rangle} = Re \oplus R(23) \oplus R((12) + (13)) \oplus R((123) + (132)), \\ (RS_3)^{\langle (123) \rangle} = Re \oplus R((12) + (13) + (23)) \oplus R(123) \oplus R(132), \\ (RS_3)^{S_3} = C. \end{array}$
- (4) $Re \oplus R(12)$ is a separable subalgebra of RS_3 which is not an image under α , so α is not onto.

References

- S.U. Chase, D.K. Harrison, A. Rosenberg, Galois Theory and Galois Cohomology of Commutative Rings, Memoirs Amer. Math. Soc. No. 52, 1965.
- F.R. DeMeyer, Some Notes on the General Galois Theory of Rings, Osaka J. Math., 2 (1965) 117-127.
- F.R. DeMeyer, Galois Theory in Separable Algebras over Commutative Rings, Illinois J. Math., 10 (1966), 287-295.
- [4] F.R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [5] F.R. DeMeyer and G.J. Janusz, Group Rings which are Azumaya Algebras, Trans. Amer. Math. Soc., 279(1) (1983), 389-395.
- [6] S. Ikehata, On H-separable polynomials of prime degree, Math. J. Okayama Univ., 33 (1991), 21-26.
- [7] T. Kanzaki, On Galois Algebra Over A Commutative Ring, Osaka J. Math. 2 (1965), 309-317.
- [8] Nuss, Philippe, Galois-Azumaya Extensions and the Brauer-Galois Group of a Commutative Ring, Bull, Belg. Math. Soc., 13 (2006), 247-270.
- [9] G. Szeto and L. Xue, The general Ikehata theorem for H-separable crossed products, International Journal of Mathematics and Mathematical Sciences, 23(10) (2000), 657-662.
- [10] G. Szeto and L. Xue, The Commutator Hopf Galois Extensions, Algebra and Discrete Mathematics, 3 (2003), 89-94.
- [11] G. Szeto and L. Xue, The Galois Algebra with Galois Group which is the Automorphism Group, Journal of Algebra, 293(1) (2005), 312-318.
- [12] G. Szeto and L. Xue, On Galois Extensions Satisfying the Fundamental Theorem, International Mathematical Forum, 2(36) (2007), 1773-1777.
- [13] G. Szeto and L. Xue, On Galois Extensions with an Inner Galois Group, Recent Developments in Algebra and Related Area, ALM 8, 239-245, Higher Education Press and International Press Beijing-Boston, 2008.

CONTACT INFORMATION

Department of Mathematics, Bradley University, Peoria, Illinois 61625- U.S.A. *E-Mail:* szeto@bradley.edu

Department of Mathematics, Bradley University, Peoria, Illinois 61625- U.S.A. *E-Mail:* lxue@bradley.edu

Received by the editors: 04.05.2009 and in final form 04.05.2009.

G. Szeto

L. Xue