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Abstract. For every discrete group G, the Stone-Čech com-

pactification βG of G has a natural structure of compact right

topological semigroup. Assume that G is endowed with some left

invariant topology ℑ and let τ be the set of all ultrafilters on G con-

verging to the unit of G in ℑ. Then τ is a closed subsemigroup of

βG. We survey the results clarifying the interplays between the al-

gebraic properties of τ and the topological properties of (G,ℑ) and

apply these results to solve some open problems in the topological

group theory.

The paper consists of 13 sections: Filters on groups, Semigroup

of ultrafilters, Ideals, Idempotents, Equations, Continuity in βG

and G∗, Ramsey-like ultrafilters, Maximality, Refinements, Resolv-

ability, Potential compactness and ultraranks, Selected open ques-

tions.

Introduction

Let G be a discrete group with the unit e and let βG be the Stone-Čech
compactification of G. We take the points of βG to be the ultrafilters on
G with the points of G identified with the principal ultrafilters. Using
the universal property of βG, we extend the group multiplication on G

to the semigroup operation on βG. Formally, the product of ultrafilters
p and q is defined by the rule
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idempotents, ideals, maximality, resolvability, extremal disconnectedness.
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A ∈ pq ⇐⇒ {g ∈ G : g−1A ∈ q} ∈ p.

With this operation, βG is a right topological semigroup, i.e. the
mapping x 7−→ xs is continuous for every s ∈ βG. The semigroup βG

is interesting because of its applications to combinatorial number theory
and to topological dynamics as well as for its own sake [10].

Now assume that G is endowed with some left invariant topology ℑ,
i.e. all shifts x 7−→ gx, g ∈ G are continuous. Then the set

τ = {p ∈ βG : p converges to e in ℑ}

is a closed subsemigroup of βG. Thus, we get general problem of study the
interplays between the properties of left invariant (in particular, group)
topology ℑ on G and the algebraic structure of corresponding semigroup
of ultrafilters τ . The following striking results were obtained on this way.

• There exists in ZFC a maximal regular left topological group (in
particular, a maximal regular homogeneous space).

• Every non-discrete left topological group of second category can be
partitioned into countably many dense subsets.

• Every countable Abelian group G with only finite numbers of ele-
ments of order 2 can be partitioned into countably many subsets that are
dense in every group topology on G.

• If there exists a maximal topological group, then there exists a P -
point in ω∗. If there exists a non-discrete irresolvable topological group
which is either Abelian or countable, then there exists a P -point in ω∗.

• If G is a countable discrete group and F is a finite subgroup from
βG, then there exist a finite subgroup H from G and an idempotent
p ∈ βG such that F = Hp and p commutes with every element of H. In
particular, every finite subgroup of βZ is a singleton.

In the first part (sections 1-6) we present the results on algebraic
structure of τ which are necessary for applications in the second part
(sections 7-12). We conclude the paper with the list of selected open
questions (section 13).

1. Filters on groups

Let ϕ be filter on a group G with the unit e, A ⊆ G.
A subset

cl(A,ϕ) = {g ∈ G : gF ∩A 6= ∅ for every F ∈ ϕ}

is called a closure of A by ϕ.
A subset
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int (A,ϕ) = {g ∈ G : gF ⊆ A for some F ∈ ϕ}

is called an interior of A with respect to ϕ.

Let ϕ,ψ be filters onG. We define a product ϕ,ψ by the rule: A ∈ ϕ,ψ

if and only if int (A,ψ) ∈ ϕ. By this definition, the family

{
⋃

g∈F gHg : F ∈ ϕ, Hg ∈ ψ for every g ∈ F}

forms a base for the filter ϕψ. The following basic identity

int (int (A,ψ), ϕ) = int (A,ϕψ)

shows that the product is associative.

A topology ℑ on a group G is called left invariant if the mapping
x 7−→ gx is continuous for every g ∈ G. A group G endowed with a
left invariant topology is called left topological. Since every left invariant
topology ℑ on G is uniquely determined by the filter τ of neighborhoods
of e, G endowed with ℑ will be denoted by (G, τ). A filter ϕ on a group
G is called left topological if ϕ is the filter of neighborhoods of e for some
left invariant topology on G.

For characterization of left topological filters we need some more def-
initions. Given an arbitrary filter ϕ on G, we denote by int (ϕ) the filter
on G with the base {int (F,ϕ) : F ∈ ϕ}, and by Clϕ the mapping,
determined by the rule Clϕ(A) = cl (A,ϕ) for every A ⊆ G.

Theorem 1.1. For every filter ϕ on a group G, the following statements
are equivalent

(i) ϕ is left topological,

(ii) ϕϕ = ϕ and e ∈ F for every F ∈ ϕ,

(iii) ϕ = int (ϕ),

(iv) Clϕ is a closure operator.

Theorem 1.2. For every filter ϕ on a group G, the filter int (ϕ) is left
topological.

Theorem 1.3. For every ultrafilter ϕ on a group G, the left topological
group (G, int (ϕ)) is Hausdorff and zero-dimensional. If ϕϕ = ϕ then
(G, int (ϕ)) is extremely disconnected.

For every filter ϕ on a group G, we denote by hull (ϕ) the maximal
(by inclusion) left topological filter on G such that hull (ϕ) ⊆ ϕ. In other
words, hull (ϕ) is the filter of neighborhoods of e for the strongest left
invariant topology in which ϕ converges to e.

A topological space X is called strongly extremally disconnected if, for
every open non-closed subset U of X, there exists an element x ∈ cl U \U
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such that {x}
⋃
U is a neighborhood of x. Every strongly extremally

disconnected space is extremally disconnected.

Theorem 1.4. For every group G and every ultrafilter ϕ on G, the left
topological group (G, hull (ϕ)) is strongly extremally disconnected.

Now let G be a discrete group, X be a topological space and (g, x) 7−→
g(x) be a continuous action of G on X. We fix an arbitrary element
x0 ∈ X and denote by ϕ the filter on G with the base consisting of
the subsets of the form {g ∈ G : g(x0) ∈ U} where U runs over all
neighborhoods of x0. It is easy to check that ϕ is left topological. On
the other hand, if ϕ is a left topological filter on G, then ϕ arises in this
way from the left action of G on X = (G,ϕ) with x0 = e.

Comments. For proofs of these statements see [20] and [41]. Every
countable group G admits a Hausdorff topology in which all mapping
x 7−→ gx, x 7−→ xg, g ∈ G and x 7−→ x−1 are continuous. For every
countable zero-dimensional homogeneous space X and every countable
group G, there is a left invariant topology on G such that G is homeo-
morphic to X [61].

2. Semigroup of ultrafilters

Let X be a discrete space and let βX be the Stone-Čech extension of X.
We take the point of βX to be the ultrafilters on X with the points of X
identified with the principal ultrafilters. We put X∗ = βX \X. For every
subset A ⊆ X, let Ā = {q ∈ βX : A ∈ q}. The topology of βX can be
defined by stating that the family {Ā : A ⊆ X} is a base for the open
sets. For every filter ϕ on X, the subset ϕ̄ =

⋂
{Ā : A ∈ ϕ} is closed in

βX, and, for every nonempty closed subset K ⊆ βX, there exists a filter
ϕ on X such that K = ϕ̄. We put ϕ∗ = ϕ̄

⋂
X∗. Let Y be a compact

Hausdorff space. For every mapping f : X −→ Y , we denote by fβ the
Stone-Čech extension of f onto βX.

Now let G be a discrete group. For every element g ∈ G, we extend
the left shift lg : G −→ G, lg(x) = gx to the mapping l

β
g : βG −→

βG. Clearly, for every ultrafilter q ∈ βG, lβg = {gQ : Q ∈ q}, so we

write lβg (q) = gq. Further, for each q ∈ βG, we extend the right shift

rq : G −→ βG, rq(x) = xq to the mapping r
β
q : βG −→ βG. For

every p ∈ βG, we put rβ
q (p) = pq. It is easy to verify that this product

of ultrafilters coincides with the product defined in Section 1. By the
construction, the mapping x 7−→ xq is continuous for every q ∈ βG, and
the mapping x 7−→ qx is continuous for every q ∈ G. In particular, βG
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is a right topological semigroups. For the structure of βG and plenty of
its combinatorial application we address to the books [10] and [27].

For every left topological filter τ on G, τ and τ∗ are closed subsemi-
groups of βG. The semigroup τ is called the the semigroup of ultrafilters
of the left topological group (G, τ). In what follows we use the semigroups
of ultrafilters to explore the topological properties of left topological and
topological groups.

Let S be a closed subsemigroup of βG and let ϕ be a filter on G such
that S = ϕ. We say that S is uniform if ϕ is a left topological filter.
Equivalently, S is uniform if, for every U ∈ ϕ, there exists V ∈ ϕ, such
that V ϕ ⊆ U . Every finite subsemigroup of βG is uniform. For examples
of non-uniform subsemigroups see [20] and [11].

By definition, for every left topological group (G, τ), τ is the set of
all ultrafilters on G converging to e. Now we assume that (G, τ) is Haus-
dorff and denote by Cτ the set of all converging ultrafilters on (G, τ).
For q ∈ Cτ and the limit g of q, we put π1(q) = g, π2(q) = g−1q. Thus,
we have defined the bijection π = π1 × π2 between (G, τ) and the direct
product (G, τ)× τ of the left topological group (G, τ) and the right topo-
logical semigroup τ . In the following theorems βG means the Stone-Čech
compactification of a discrete group G.

Theorem 2.1. For every Hausdorff left topological group (G, τ), the
following statements are equivalent

(i) Cτ is a subsemigroup of βG and π1 is a homomorphism,

(ii) the mapping x 7−→ g−1xg is continuous at e in (G, τ) for every
g ∈ G.

Theorem 2.2. For every Hausdorff left topological group (G, τ), the
following statements are equivalent

(i) Cτ is a subsemigroup of βG and π1, π2 are a homomorphisms,

(ii) for every element g ∈ G, there exists U ∈ τ such that gx = xg

for each x ∈ U .

Theorem 2.3. For every Hausdorff left topological group (G, τ), the
following statements hold

(i) π1 is continuous if and only if (G, τ) is regular,

(ii) π2 is continuous if and only if (G, τ) is discrete.

Theorem 2.4. Let (G, τ) be a Hausdorff semitopological group. Then
Cτ is a subsemigroup of βG and the following statements hold

(i) (G, τ) is a homomorphic image of Cτ ,

(ii) (G, τ) is a continuous homomorphic image of Cτ provided that
(G, τ) is regular,

(iii) Cτ is algebraically isomorphic to G× τ .
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Corollary. Let (G, τ) be a compact Hausdorff topological group. Then
(G, τ) is a continuous homomorphic image of βG. If G is commutative,
βG is algebraically isomorphic to G× τ .

Comments. Most results of this section are from [29].

3. Ideals

Every compact Hausdorff right topological semigroup S contains at least
one minimal left ideal. Every minimal left ideal is closed and the union
M(S) of all minimal left ideals of S is the minimal ideal of S. For algebraic
structure of M(S) see [10, Chapter 1] or [47, Chapter 1]. Note that every
minimal left ideal L of S is of the form L = Sx for every x ∈ L, so the
following theorem describes all minimal left ideal of closed subsemigroups
of βS.

Theorem 3.1. Let τ be a filter on a group G such that τ is a subsemi-
group of βG, and let p be an ultrafilter on G such that p ∈ τ and p ∈ τp.
Then τp is a minimal left ideal of τ if and only if, for every A ∈ p and ev-
ery U ∈ τ , there exists a finite subset F ⊆ U such that cl (F−1A, p) ∈ τ .

Corollary 1. Let (G, τ) be a left topological group and let p ∈ τ . Then
τp is a minimal ideal of semigroup τ if and only if, for every A ∈ p and
every neighborhood U of e, there exists a finite subset F ⊆ U such that
cl (F−1A, p) is a neighborhood of e.

Corollary 2. Let (G, τ) be a left topological group and let V be a neigh-
borhood of the unit e. For every finite partition V = A1

⋃
...

⋃
An and

every neighborhood U of e, there exist Ai and a finite subset F ⊆ U such
that F−1AiA

−1
i is a neighborhood of e.

Corollary 3. For every group G and every finite partition G = A1
⋃
...⋃

An, there exist Ai and a finite subset F of G such that G = FAiA
−1
i

and AiA
−1
i AiA

−1
i ∈ p for every p ∈ βG such that pp = p.

If L is a minimal left ideal of βG, then G acts continuously on L by
the rule x 7−→ gx, x ∈ L, g ∈ G, and L is the minimal universal G-space
(see [18] and [53]).

Now we define some ideals and describe some ideal decomposition of
the semigroup of ultrafilters of left topological group.

Let (G, τ) be a left topological group and let ϕ be a filter on G such
that τ ⊆ ϕ. We say that ϕ is an o-filter if ϕ has a base consisting of the
open subsets of (G, τ). A filter that is maximal in the class of all o-filters
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is called an o-ultrafilter. By Zorn Lemma, every o-filter is contained in
some o-ultrafilter, but o-ultrafilter needs not to be an ultrafilter.

If ϕ is a filter on (G, τ), τ ⊆ ϕ and ϕτ = ϕ, we say that ϕ is a uniform
right ideal of the semigroup τ . It is easy to check that ϕ is a uniform right
ideal if and only if ϕ is an o-filter.

Given an arbitrary filter ϕ on (G, τ) such that τ ⊆ ϕ, there exists the
maximal o-filter o(ϕ) satisfying o(ϕ) ⊆ ϕ, which is called the open hull
of ϕ. Clearly, ϕ is an o-filter if and only if ϕ = o(ϕ). Moreover, ϕ is
an o-filter if and only if ϕ = o(p) for every ultrafilter p on G such that
ϕ ⊆ p.

An ultrafilter p ∈ τ is called preopen if int (F, τ) ∈ p for every closed
in (G, τ) subset F ∈ p. An ultrafilter p ∈ τ is preopen if and only if o(p)
is an o-ultrafilter. The set of all preopen ultrafilters from τ forms the
closed ideal of τ .

Theorem 3.2. For every left topological group (G, τ), the ideal of all
preopen ultrafilters is disjoint union of the uniform right ideals ϕ, where
ϕ runs over all o-ultrafilters from τ .

We say that a filter ϕ ⊆ τ is a c-filter if ϕ has a base consisting of
the subsets of G \ {e} that are closed in G \ {e}. A filter that is maximal
in the class of all c-filters is called c-ultrafilter. By Zorn Lemma, every
c-filter is contained in some c-ultrafilter, but c-ultrafilter needs not to be
an ultrafilter.

Theorem 3.3. Let (G, τ) be a nondiscrete Hausdorff left topological
group such that the space G \ {e} is normal. Then the semigroup τ∗ is
disjoint union of the uniform right ideals o(ϕ), where ϕ runs over all
c-ultrafilters on (G, τ).

A c-filter ϕ on (G, τ) is called primitive if, for any closed in G \ {e}
disjoint subsets A,B, A

⋃
B ∈ ϕ implies either A ∈ ϕ or B ∈ ϕ. Every

c-ultrafilter is primitive.

Theorem 3.4. For every nondiscrete Hausdorff left topological group
(G, τ), the semigroup τ∗ is a union of the uniform right ideals o(ϕ),
where ϕ runs over all primitive ultrafilters from τ .

Note that the union in Theorem 3.3 could not be disjoint.

The applications of the above notions are based on the following ob-
servations.

• A left topological group (G, τ) is extremally disconnected if and
only if τ has only one uniform right ideal.

• A left topological group (G, τ) is nodec (= every nowhere dense
subset is closed) if and only if every ultrafilter p ∈ τ is preopen.
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• A left topological group (G, τ) is irresolvable (= G can not be par-
titioned onto two dense subsets) if and only if every preopen ultrafilter is
an o-ultrafilter.

Comments. The results of this section are from [19] and [21].

4. Idempotents

An element p of a semigroup S is called an idempotent if pp = p. Denote
by E(S) the set of all idempotents of S and define three natural preoders
on E(S)

e ≤l f if and only if e = ef,

e ≤r f if and only if e = fe,

e ≤ f if and only if e = ef = fe.

Every compact right topological semigroup has an idempotent [10,
Theorem 2.5]. In particular, for every discrete group G, every closed
subsemigroup of βG has an idempotent. For combinatorial and dynamical
applications of this theorem see [10] and [18], [53].

Every idempotent p ∈ βG determines two topologies (G, int (p)) and
(G, hull p) which will be characterized in Section 9. Here we define two
special types of idempotents of βG (namely, strongly right maximal and
strongly summable) of great importance for constructions of extremal
topologies on group.

By [10, Theorem 2.12], every compact right topological semigroup has
a right maximal idempotent, i.e. an idempotent, which is maximal with
respect to ≤r. If G is a countable discrete group and p is a right maximal
idempotent in βG, then the subsemigroup {q ∈ βG : qp = p} is finite
[10, Theorem 9.4].

Let G be an infinite discrete Abelian group, p ∈ G∗ be an idempotent.
Then, for every subset P ∈ p, there exists an infinite subset A ⊆ P such
that FS(A) ⊆ P , where FS(A) is the set of all finite sums of distinct
elements of A. This observation easily implies the Hindman’s Theorem:
for every finite partition G = A1

⋃
...

⋃
An, there exist Ai and an infinite

subset A ⊆ Ai such that FS(A) ⊆ Ai.

An idempotent p ∈ G∗ is called strongly summable if, for every P ∈ p,
there exists an infinite subset A ⊆ P such that FS(A) ⊆ P and FS(A) ∈
p. By [12, Theorem 2.8], Martin’s Axiom (MA) implies that there is a
strongly summable ultrafilter p ∈ G∗. On the other hand [12, Theorem
3.6], the existence of strongly summable ultrafilters on G implies the
existence of P -point in ω∗.
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An element r of a semigroup S is called right cancellable if, for any
p, q ∈ S, pr = qr implies p = q. Let G be a countable discrete group,
r ∈ βG. By [10, Theorem 8.18], p is right cancellable in βG if and only
if there is no idempotent p ∈ G∗ such that pr = r.

5. Morphisms

A topological space X with the distinguished element eX (the identity)
and a partial binary operation (the multiplication) is called a local left
topological group if there is a left topological group G such that

• eX is the identity of G,

• X is an open neighborhood of eX in G,

• the partial multiplication on X is precisely the partial operation
induced on X by the multiplication on G.

Note that every left topological group is a local left topological group.

Let X,Y be local left topological groups. A mapping f : X −→
Y is called a local homomorphism if f(eX) = eY and, for every x ∈
X, there exists a neighborhood U of eX such that, for all y ∈ U , the
products xy, f(x)f(y) are defined and f(xy) = f(x)f(y). If, in addition,
f is a homeomorphism, then f is called a local isomorphism. If the left
topological groups (G, τ) and (G′, τ ′) are locally isomorphic, then the
semigroups τ and τ ′ are topologically isomorphic.

Theorem 5.1 Any two nondiscrete countable Hausdorff zero-dimensional
local left topological groups of countable weight are locally isomorphic.

A local automorphism f of a local left topological group X is called
a homogeneous local automorphism of order m (m is a natural number)
if the f -orbit O(f, x) = {fn(x) : n < ω} of every element x ∈ X,
x 6= eX is of cardinality m. We consider the following example. Let
Zm+1 = {0, 1, ...,m} be the cyclic group and let H(m+1) = ⊕ωZm+1 be
the direct sum of ω discrete copies of Zm+1 endowed with the topology of
pointwise convergence, so H(m+1) is a topological group. Let sm be the
coordinate-wise substitution on H(m) induced by a substitution on Zm+1

which is the product of independent cycles (1)(2, 3, ...,m+ 1). Clearly, f
is a homogeneous local automorphism of order m.

Theorem 5.2 Let X be a countable nondiscrete Hausdorff zero-dimen-
sional local left topological group and let f be a homogeneous local au-
tomorphism of X of order m. Then there exists a local isomorphism
h : X −→ H(m+ 1) such that the following diagram is commutative
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X
h

−→ H(m)

f ↓ sm ↓

X
h

−→ H(m)

Theorem 5.3 Let G,H be countable discrete groups and let ϕ : βG −→
H∗ be a continuous homomorphism. Then ϕ(βG) is a finite group.

Theorem 5.4 Let G be a countable discrete groups, H be a finite discrete
group and let ϕ : G∗ −→ H be a continuous homomorphism. Then there
exists a homomorphism f : G −→ H such that ϕ = fβ |G∗ .

Theorem 5.5. Let G,H be countable discrete groups, ϕ : G∗ −→ H∗ be
a continuous surjective homomorphism. Then there exists a homomor-
phism f : G −→ H such that ϕ = fβ |G∗ .

Comments. The notion of local left topological semigroup was intro-
duced by E. Zelenyuk. Theorems 5.1 and 5.2 are parts of more general
Theorem 3.1 from [60]. Originally, Theorem 5.1 arouse as the positive an-
swer to the author’s question: are the semigroups of ultrafilters of any two
countable metrizable topological group topologically isomorphic? The
most remarkable application of local left topological groups is Zelenyuk’s
Theorem, stating that every finite subgroup of βG is a singleton, where
G is a countable discrete torsion-free group. For proof of this theorem
see [57] or [10, Chapter 7]. The finite subgroups of βG, where G is a
countable discrete group, were characterized in [31]. These all have the
form Fp, where F is a finite subgroup of G and p is an idempotent which
commutes with the elements of F .

For the case G = H = Z, Theorem 5.3 was proved by D.Strauss [52]
as the answer to question of van Douwen. Theorems 5.3, 5.4 and 5.5 are
from [38]. For discontinues automorphisms see [29].

6. Equations

Some problems concerning joint continuity in βG (see Section 7) or re-
solvability of left topological groups (see Section 11) can be reduced to the
equations in βG. Here we present some statements about corresponding
equations.

Let G be an Abelian group, p ∈ βG. For every integer m, by mp we
denote the ultrafilter on G with the base {mP : P ∈ p}.

Theorem 6.1. Let G be an infinite discrete Abelian group, p ∈ G∗,

s ∈ Z, s 6= 0, 1. If the subgroup {g ∈ G : s(s − 1)g = 0} is finite, then
the equation x+ p = y + sp is not solvable in βG.
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Theorem 6.2. Let G be an infinite discrete Abelian group, p ∈ G∗,

s ∈ Z, s 6= 0, 1. Suppose that one of the following condition holds

(i) there exists P ∈ p such that every element of P has an infinite
order,

(ii) for every P ∈ p, the set of all prime divisors of orders of elements
of P is infinite.

Then the equation x+ p = y + sp is not solvable in βG.

In other words, these theorems states that, under corresponding con-
ditions, βG+ p

⋂
βG+ sp = ∅.

Theorem 6.3. If G is a discrete Abelian group, p ∈ βG and p+ p = 2p,
then p is a principal ultrafilter .

Theorem 6.4. For every p ∈ Z
∗ and every integer s, s 6= 0, 1, the

equation p+ x = sp+ y is not solvable in βZ.

It follows from Theorem 6.4 that, for every idempotent p ∈ Z
∗ and

every integer s, s 6= 0, 1, the subgroup of βG generated by p and sp is a
free product of the subsemigroups {p} and {sp}.

Comments. These results are from [23] and [24]. For generalizations
see [13].

7. Continuity in βG and G∗

Let G be a discrete group, p, q ∈ βG. We say that (p, q) is a point of
joint continuity if the multiplication βG×βG −→ βG is continuous at the
point (p, q). It is easy to see that (p, q) is a point of joint continuity if and
only if, for every R ∈ p, q, there exist P ∈ p, Q ∈ q such that PQ ⊆ R.
If either p ∈ G or q ∈ G, then (p, q) is a point of joint continuity. These
points of joint continuity are called standard.

Let G be a countable discrete Abelian group, p, q ∈ G∗. If (p, q) is a
point of joint continuity, then there exists r ∈ G∗ such that the equation
x+r = y+2r has a solution in βG. This reduction from [23] and Theorem
6.1 give us

Theorem 7.1. If G is a countable discrete Abelian group with finite
subsets of elements of order 2, then every point of joint continuity in
βG× βG is standard.

Let G be a discrete group. For every p ∈ βG, we define the mapping
λp : βG −→ βG by the rule λp(q) = pq. The set

Λ(βG) = {p ∈ βG : λp is continuous at every point q ∈ βG}
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is called the topological center of βG.
For every p ∈ G∗, we denote by λ∗p the restriction of λp to G∗. The

set

Λ(G∗) = {p ∈ G∗ : λ∗p is continuous at every point q ∈ G∗}

is called the topological center of G∗.

Theorem 7.2. For every discrete group G, Λ(G∗) = ∅. Moreover, if |G|
is nonmeasurable, then there exists q ∈ G∗ such that λ∗p is discontinuous
at every point q ∈ G∗.

Corollary For every discrete group G, Λ(βG) = G.

Theorem 7.3. Suppose that a countable discrete G is isomorphic to
some subgroup of compact topological group. If q ∈ G∗ and, for every
p ∈ G∗, λ∗p is continuous at q, then q is a P -point in G∗.

Theorem 7.4. Let G be a countable discrete group and let p ∈ G∗

be either an idempotent or a right cancellable element of βG. If λ∗p is
continuous at p, then there exists a mapping f : G −→ ω such that
fβ(p) is a P -point in ω∗.

Given an arbitrary discrete group G, we denote by µ : βG −→ βG

the mapping defined by µ(q) = qq. Let µ∗ be the restriction of µ to G∗.

Theorem 7.5. Let G be a countable discrete group and let p ∈ G∗

be either an idempotent or a right cancellable element of βG. If µ∗ is
continuous at p, then there exists a mapping f : G −→ ω such that
fβ(p) is a P -point in ω∗.

Theorem 7.6. Let G be a countable discrete Abelian group with finite
set of elements of order 2. If p ∈ G∗ and µ∗ is continuous at p, then p is
a P -point in G∗.

In spite of above theorems, the mappings λ∗p and µ∗ have some conti-
nuity-like property.

Let X,Y be topological spaces. A mapping f : X −→ Y is called
quasi-continuous at point x ∈ X if, for every neighborhoods U and V

of x and f(x), there exists a nonempty open subset W ⊆ U , such that
f(W ) ⊆ U .

Theorem 7.7. Let G be a discrete group and let p ∈ G∗. Then µ∗ is
quasi-continuous at p. If G is countable, then λ∗p is quasi-continuous at
p.

Comments. Theorem 7.1 is from [23]. Under some additional to
ZFC set-theoretical assumptions, there are non-standard points of joint
continuity in βG [23].
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Theorem 7.2 is from [28], Corollary from Theorem 7.2 and the first
statement of this theorem in the case of countable groups is due to [9].
For generalization of Theorem 7.2 see [40].

The remaining theorems of this section are from [45].

8. Ramsey-like ultrafilters

It follows easily from the Ramsey theorem that, for every coloring χ :
G −→ {0, 1} of an infinite Abelian group G, there exists an infinite
subset A ⊆ G such that the subset PS(A) = {a + b : a, b ∈ A, a 6= b}
is monochrome. We say that an ultrafilter p ∈ G∗ is a PS-ultrafilter if,
for every coloring χ : G −→ {0, 1}, there exists A ∈ p such that PS(A)
is monochrome. Clearly, every Ramsey (=selective) ultrafilter on G is a
PS-ultrafilter. An Abelian group G is called a Boolean group if 2g = 0
for every g ∈ G. Every strongly summable ultrafilter P (see Section 4)
on an infinite Boolean group is a PS-ultrafilter but p is not selective. If
p is a PS-idempotent on a countable Boolean group G, then (G, int p)
is a maximal topological group (see Section 1).

A subset A of an Abelian group G is called 2-independent or a Sidon
set if, for any two-elements subsets {a, b}, {c, d} of A, a+b = c+d implies
{a, b} = {c, d}. A PS-ultrafilter is selective if and only if there exists a
2-independent subset A ∈ p.

Theorem 8.1. Every PS-ultrafilter on an infinite Abelian group without
elements of order 2 is selective.

Theorem 8.2. Let G be an infinite Abelian group, p ∈ G∗, H = {g ∈
G : 2ng = 0 for some n ∈ N}. If p is a PS-ultrafilter then either p is
selective or there exists g ∈ G such that g +H ∈ p.

An ultrafilter p on a set X is called a Q-point, if, for every partition of
X onto finite subsets, there exists P ∈ p such that |P

⋂
A| ≤ 1 for every

cell A of the partition. It follows from Theorem 8.2 that if PS-ultrafilter
p is a Q-point then p is selective.

Theorem 8.3. Let G be an infinite Abelian group, p be a PS-ultrafilter
on G such that, for every P ∈ p, there exist a, b ∈ P , a 6= b such that
a+ b ∈ P . Then p+ p = p and 2p = 0.

Theorem 8.4. If p is a PS-ultrafilter on a countable Abelian group G,
then either p is right cancellable or there exist p′ ∈ G∗, g ∈ G such that
p = g + p′, p′ + p′ = p′.

Theorem 8.5. Let G be a countable Abelian group, p be a PS-ultrafilter
on G. Then there exists a mapping f : G −→ ω such that fβ(p) is a
P -point in ω∗.
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Let H be a subgroup of an infinite Abelian group G. We say that
an ultrafilter p ∈ G∗ is H-selective if either there exists g ∈ G such that
g + H ∈ p or there exists P ∈ p such that |P

⋂
(g + H)| ≤ 1 for every

g ∈ G. We say that p is subselective if p is H-selective for every subgroup
H of G. Every PS-ultrafilter is subselective, but the class of subselective
ultrafilters is much more wider than the class of PS-ultrafilters.

Theorem 8.6. For every infinite Abelian group G, there exists a sub-
selective ultrafilter p ∈ G∗ such that p + p = p and ‖p‖ = |G| where
‖p‖ = min{|P | : P ∈ p}.

Theorem 8.7. Every free ultrafilter on an infinite Abelian group G is
subselective if and only if every infinite subgroup H of G has a finite index
in G.

Comments. The PS-ultrafilters were introduced in [25], all results of
this section are from [39].

9. Maximality

All topological spaces in this section are suppose to be Hausdorff. A
topological space X is called maximal if X has no isolated points but
X has an isolated points in every stronger topology. We say that a left
topological group is maximal if it is maximal as a topological space.

Let G be an infinite discrete group with the identity e. For every
idempotent p ∈ G∗, we put τp = {P

⋃
{e} : P ∈ p}. Then τp is a left

topological filter and the left topological group (G, τp) is maximal. In the
notations of Section 1, τp = hull(p) so τp is the strongest left invariant
topology on G in which p converges to e. In what follows, we write G(p)
instead of (G, τp).

On the other hand, if (G, τ) is a maximal left topological group, then
τ∗ = {p}, p is an idempotent of G∗ and (G, τ) = G(p). Thus, there is a
bijection between the set off all maximal left invariant topologies on G

and the set of all idempotents of G∗. It follows that, for every infinite
group G, there are 22|G|

maximal left invariant topologies on G.

For every filter ϕ on a set X, we put ‖ϕ‖ = min{|F | : F ∈ ϕ}. If
(G, τ) is a nondiscrete left topological group, then there exists an idem-
potent p ∈ τ∗ such that ‖p‖ = ‖τ‖. In other words, the topology of (G, τ)
can be strengthened to the maximal left invariant topology (G, τ ′) such
that ‖τ ′‖ = ‖τ‖.

As distinct from the topological group case, a left invariant topology
on a group needs not to be regular. Given an idempotent p ∈ G∗, let ϕp

be the filter of neighborhoods of the identity e of the strongest regular
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left invariant topology on G in which p converges to e. In the notations of
Section 1, it can be shown that ϕp = int(p) so ϕp = {q ∈ βG : qp = p}.
In what follows we write G[p] instead of (G, int p). By Theorem 1.3, G[p]
is zero-dimensional and extremally disconnected.

Theorem 9.1. Let (G, τ) be a countable nondiscrete regular left topolog-
ical group of countable weight. Then there exists an idempotent p ∈ τ∗

such that G[p] = G(p).

Corollary. Every infinite group G admits a regular maximal left in-
variant topology. In particular, there exists (in ZFC) a regular maximal
homogeneous space.

The proof of Theorem 9.1 uses the right maximal idempotent and
Theorem 5.1.

Theorem 9.2. Every maximal left topological group is a union of a
countable family of closed discrete subspaces.

It follows from Theorem 9.2 that every maximal left topological group
has countable pseudocharacter, i.e. the identity e of G is an intersection
of some countable family of open subsets. Equivalently, every countable
complete idempotent from βG is a principal ultrafilter.

Let (G, τ) be an infinite left topological group. The cardinal κ is called
the index of boundedness of (G, τ) if κ is the minimal cardinal such that,
for every U ∈ τ , there exists F ⊆ G such that G = FU and |F | < κ. If
the index of boundedness of (G, τ) is ℵ0, (G, τ) is called totally bounded.

Theorem 9.3. The index of boundedness of every maximal left topolog-
ical group (G, τ) is greater than the cofinality of |G|.

Theorem 9.4. Let G be an infinite group, p be an idempotent from the
minimal ideal of the semigroup βG. Then G[p] is totally bounded.

It follows from Theorem 9.4, that every infinite group admits a zero-
dimensional totally bounded left invariant topology.

By [ 43, Theorem 2], for every free group G and every idempotent
p ∈ G∗, the cellularity of the left topological group G[p] is |G|. In view
of Theorem 9.4, there are the totally bounded left topological groups of
arbitrarily large cellularity.

Now we present some results concerning the maximal topological
groups.

Theorem 9.5. Let G be an infinite group, p ∈ G∗. If G[p] is a topological
group, then G[p] contains a countable open Boolean subgroup.

If (G, τ) is a maximal topological group, then (G, τ) = G(p) for some
idempotent p ∈ G∗. Since every group topology is regular, we have
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G(p) = G[p]. Hence, Theorem 9.5 is a generalization of Malykhin’s theo-
rem [16]: every maximal topological group has a countable open Boolean
subgroup.

Under MA, an example of maximal topological group was constructed
by Malykhin in [15].

Let G be a countable Boolean group, p be an idempotent from G∗.
Then G(p) is a topological group if and only if p is a PS-ultrafilter (see
Section 8). In particular, every strongly summable ultrafilter on G de-
termines the maximal group topology. It was shown in [20] that the
existence of a maximal topological group implies the existence of P -point
in ω∗. The following theorem is a generalization of this statement.

Theorem 9.6. Let G be a group, p be an idempotent from G∗ such that
G[p] is a topological group. Then there exists a mapping f : G −→ ω

such that fβ(p) is a P -point in ω∗.

Theorem 9.7. Every maximal topological group is complete in the left
uniformity.

It is interesting that if there exists a maximal topological group then
there exists a maximal topological group with distinct left and right uni-
formities.

A groupG provided with a topology is called semitopological ifG is left
and right topological. A semitopological group is called quasitopological
if the mapping x 7−→ x−1 is continuous. A group G provided with a
topology is called paratopological if the multiplication (x, y) −→ xy is
jointly continuous.

Theorem 9.8. For every group G provided with a topology, the following
statements are equivalent

(i) G is a maximal semitopological group,
(ii) G is a maximal left topological group and, for every element g ∈ G,

there exists a neighborhood U of the identity such that xg = gx for every
x ∈ U .

Theorem 9.9. For every group G provided with a topology, the following
statements are equivalent

(i) G is a maximal quasitopological group,
(ii) G is a maximal semitopological group and there exists a neighbor-

hood U of the identity e such that x2 = e for every x ∈ U .

Corollary. Let G be a maximal quasitopological group. Then every neigh-
borhood of the identity contains an infinite Boolean subgroup.

As distinct from the topological groups case, the maximal quasitopo-
logical groups can be easily constructed in ZFC. Indeed, let G be an
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infinite Boolean group and let p be an idempotent from G∗. Then G(p)
is the maximal quasitopological group. In view of Corollary from Theo-
rem 9.9 it is naturally to ask (see [34] or [3 , Question 3)]: does there exist
an open Abelian subgroup in every maximal quasitopological group? The
negative answer (in ZFC) to this question was done in [44].

Theorem 9.10. Every maximal paratopological group is a topological
group.

Comments. All results of this section are from [33] and [34]. For proof
of Theorem 9.1 see also [10, Chapter 9]. The topologies on semigroups
determined by idempotents were considered in [11].

10. Refinements

As we have seen in the previous section, maximality is a very exotic phe-
nomenon in the category of topological groups because there exist ZFC-
models without maximal topological groups. In contrast to topological
groups every nondiscrete left topological group has the left topological
refinements that are maximal. But from the topological point of view
these refinements could be very far from the original left invariant topol-
ogy on a group. In this section we consider some new kinds of refinements
of the left invariant topologies. On one hand, these refinements are very
close to the original topology. On the other hand, they have a wide spec-
trum of extremal topological properties. The results presented in this
section witness that the category of left topological groups is much more
appropriate environment for life of extremal objects than the category
of topological groups. Moreover, the extremal objects are not exotic in
this category because they can be constructed from any left topological
groups in some very natural ways.

Let τ, ϕ be left topological filters on a group G. We say that (G,ϕ) is
an open refinement of (G, τ) if τ ⊆ ϕ and every nonempty open subset of
(G,ϕ) contains a non-empty open subset of (G, τ). If in addition τ 6= ϕ,

(G,ϕ) is called a proper open refinement of (G, τ). A left topological
group (G, τ) is called o-maximal if it has no proper open refinements.
By Zorn Lemma, for every left topological group, there exists a maxi-
mal open refinement. Every maximal open refinement is o-maximal. To
characterize these refinements we use the o-ultrafilters from Section 3.

Theorem 10.1. Let τ, ϕ be left topological filters on a group G, τ ⊆ ϕ.

Then (G,ϕ) is a maximal open refinement of (G, τ) if and only if there
exists an o-ultrafilter ψ on (G, τ) such that ϕ = {F

⋃
{e} : F ∈ ω},

where e is the identity of G.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.100 Algebra in the Stone-Čech compactification

Theorem 10.2. A left topological group (G, τ) is o-maximal if and only
if, for every open subset U of (G, τ) such that e ∈ cl (U, τ), the subset
{e}

⋃
U is a neighborhood of e.

It follows from above theorems that every left topological group has
a strongly extremally disconnected (see Section 1) open refinement. We
note also that some basic cardinal invariants of left topological groups
(density, cellularity, index of boundedness) are stable under the open
refinements.

Let τ, ϕ be left topological filters on a group G, τ ⊆ ϕ. We say
that (G,ϕ) is a dense refinement of (G, τ) if cl (U, τ) ∈ τ for every
U ∈ ϕ. If in addition τ 6= ϕ, (G,ϕ) is called a proper dense refinement.
A left topological group is called d-maximal if it has no proper dense
refinement. By Zorn Lemma, every left topological group has a maximal
dense refinement and every maximal dense refinement is d-maximal.

Let (G, τ) be a left topological group and let ϕ be a filter on G such
that τ ⊆ ϕ. We put (τϕ)e = {F

⋃
{e} : F ∈ τϕ} where e is the

identity of G. Then (G, (τϕ)e) is a dense refinement of (G, τ). If (G, τ)
is d-maximal, then (τp)e = τ for every ultrafilter p ∈ τ . It follows that
τ = L

⋃
{e} where L is the minimal left ideal of τ .

Let τ, ϕ be left topological filters on a group G, τ ⊆ ϕ. We say that
(G,ϕ) is an open-dense refinement of (G, τ) if it is both open and dense
refinement. If in addition τ 6= ϕ, (G,ϕ) is called a proper open-dense
refinement of (G, τ). A left topological group is called od-maximal if it
has no proper open-dense refinements.

Given any left topological filter τ on a group G, consider the strongest
filter ψ on G containing all o-filters on (G, τ). We call ψ the open core of
τ . Clearly, ψ is the strongest filter containing all o-ultrafilters on (G, τ),
so p ∈ ψ if and only if p is preopen in (G, τ). By Theorem 1.1, ψe is a
left topological filter. For every subset A ⊆ G, we have A ∈ ψ if and
only if int (A

⋂
U, τ) 6= ∅ for every open subset U in (G, τ) such that

e ∈ cl(U, τ).

Theorem 10.3. Let (G, τ) be a left topological group and let ψ be an open
core of τ . Then (G,ψe) is the unique maximal open-dense refinement of
(G, τ).

A left topological group (G, τ) is called nodec if every nowhere dense
subset in (G, τ) is closed. Note that every nowhere dense subset of a
nodec group is discrete.

Theorem 10.4. For every left topological group (G, τ), the following
statements are equivalent

(i) (G, τ) is nodec,



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.I. V. Protasov 101

(ii) every ultrafilter p ∈ τ∗ is preopen,
(iii) (G, τ) is od-maximal.
By Theorems 10.3 and 10.4, every left topological group has an open-

dense refinement which is nodec.

Theorem 10.5. A nondiscrete left topological group is maximal if and
only if it is o-maximal and nodec.

Now we give an ultrafilter characterization of extremally disconnected
left topological groups.

Theorem 10.6. Let (G, τ) be a left topological group and let ϕ be an
o-ultrafilter on (G, τ). Then the left topological group (G, int ϕ) is zero-
dimensional and extremally disconnected.

Theorem 10.7. Let (G, τ) be a left topological group and let ϕ be an
o-ultrafilter on (G, τ). Then (G, τ) is extremally disconnected if and only
if int(ϕ) ⊆ τ . If (G, τ) is regular, then (G, τ) is extremally disconnected
if and only if int (ϕ) = τ .

By Theorem 10.6 and 10.7, every regular left topological group has a
zero-dimensional extremally disconnected open refinements.

A regular left topological group (G,ϕ) is called a bounded refinement
of a regular left topological group (G, τ) if τ ⊆ ϕ and, for every subset
U ∈ ϕ, there exists a finite subset K ⊆ G such that KU ∈ τ . If in
addition τ 6= ϕ, (G,ϕ) is called a proper bounded refinement of (G, τ).We
say that (G, τ) is b-maximal if it has no proper bounded refinements. By
Zorn Lemma, every regular left topological group has a maximal bounded
refinement. Clearly, every maximal bounded refinement is b-maximal.

Theorem 10.8. A regular left topological group (G, τ) is a maximal
bounded refinement of a regular left topological group (G, τ) if and only if
there exists an idempotent p from the minimal ideal of the semigroup τ

such that ϕ = int (p). A regular left topological group (G, τ) is b-maximal
if and only if ϕ = int (p) for every idempotent p from the minimal ideal
of τ .

By Theorem 1.3, for every infinite group G and every idempotent
p ∈ G∗, (G, int (p)) is zero-dimensional and extremally disconnected.
Applying Theorem 10.8, we conclude that every regular left topologi-
cal group admits a zero-dimensional extremally disconnected bounded
refinement.

Theorem 10.9. Let (G, τ) be a regular nondiscrete left topological group.
A left topological group (G,ϕ) is a maximal regular nondiscrete refinement
of (G, τ) if and only if there exists a right maximal idempotent p of the
semigroup τ∗ such that ϕ = int (p).
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By Theorem 1.4, for every group G and every ultrafilter p on G, the
left topological group (G, hull (p)) is strongly extremally disconnected.

Theorem 10.10. Let G be an infinite Boolean group and let p be a
Ramsey ultrafilter on G. Then the left topological group (G, int (p)) is a
topological group.

Given any group G and any p, q ∈ βG, we say that p, q are locally
isomorphic if the corresponding left topological group (G, hull (p)) and
(G, hull (q)) are locally isomorphic (see Section 5). The problem of clas-
sification of ultrafilter on a group up to the local isomorphism is very
difficult. The next theorem gives a solution in one special case.

Theorem 10.11. Let G be a countable group and let p, q be the right
cancellable ultrafilters from G∗. Then p, q are locally isomorphic if and
only if there exists a bijection f : G −→ G such that fβ(p) = q.

We note that a free ultrafilter p on a countable group G is right
cancellable if and only if there exists a subset P ∈ p such that the identity
of G is the only limit point of p is (G, hull (p)). For every right cancellable
p ∈ G∗, the left topological group (G, hull (p)) is Hausdorff and zero-
dimensional.

Comments. All results of this section are from [41]. It is still un-
known: does there exist in ZFC a nondiscrete nodec topological group or
a nondiscrete extremally disconnected topological group? Under MA, ev-
ery countable Abelian group admits a nondiscrete nodec group topology
(see [58] or [35, Chapter 2]). In the case of countable groups, the sec-
ond question is an old problem of Arhangel’skĭi [2]. Under CH, the first
example of nondiscrete countable extremally disconnected group was con-
structed in [51]. Theorem 10.10 is a generalization of the Sirota’s results.
Some partial results incline us to the negative answer to the Arhangel’skĭi
question. Thus, Theorem 9.6 can be re-formulated as follows. If there
exists a countable nondiscrete extremally disconnected topological group
G such that the topology of G is maximal in the class of all regular
left invariant topologies on G, then there is a P -point in ω∗. Another
statement of this type was proved in [59]. If there exists a countable
nondiscrete extremally disconnected topological group which has a non-
closed discrete subsets then there exists a P -point of ω∗. For some partial
cases of Theorem 10.11 see [54].

11. Resolvability

Given a cardinal κ, a Hausdorff topological space X is called κ-resolvable
if X can be partitioned into κ dense subset. In the case κ = 2 we say that
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X is resolvable. If X is not κ-resolvable, we say that X is κ-irresolvable.

Theorem 11.1. Every nondiscrete left topological group of second cate-
gory is ℵ0-resolvable.

The following construction is crucial for the proof of Theorem 11.1.
Let G be an uncountable group of cardinality γ with the unit e. Using a
minimal well-ordering of G we can construct inductively the chain {Gα :
α < γ} of subgroups of G such that

(i) G0 = {e}, G =
⋃
{Gα : α < γ},

(ii) Gα ⊂ Gβ for any α < β < γ,
(iii)

⋃
{Gα : α < γ} = Gβ for every limit ordinal β < γ,

(iv) |Gα| < γ for every α < γ.
For every ordinal α < γ, we decompose Gα+1\Gα into the right cosets

by the subgroup Gα and fix some subset Xα of representatives of cosets.
Thus Gα+1 \ Gα = GαXα. Take arbitrary element g ∈ G, g 6= e and
choose the smallest subgroup Gα such that g ∈ Gα. By (iii), α = α1 + 1
for some ordinal α1 < γ. Then g ∈ Gα1+1\Gα1 and g = g1 xα1 , g1 ∈ Gα1 .
If g1 6= e, we choose α2, g2 ∈ Gα2 , xα2 ∈ Xα2 such that g1 = g2xα2 . After
the finite number s(g) of steps we get the representation

g = xαs(g)
xαs(g)−1

... xα2 xα1 ,

αs(g) < αs(g)−1 < ... < α2 < α1, xαi
∈ Xαi

.

Using this representation we define the partition

G\{e} =
⋃

n∈ω

Sn+1

where Sn+1 = {g ∈ G \ {e} : s(g) = n+ 1}.
Now let (G, τ) be a nondiscrete left topological group, ϕ be an o-

ultrafilter on (G, τ). Then (G, τ) is ℵ0-irresolvable if and only if ϕ is
finite. By means of this criterion, the general case of Theorem 11.1 can
be reduced to the case in which every subset Sn is dense.

Theorem 11.2. Every infinite group G can be partitioned into |G| sub-
sets dense in every left invariant left totally bounded topology on G.

Theorem 11.3. If (G, τ) is a nondiscrete ℵ0-irresolvable topological
Abelian group, then the subgroup {g ∈ G : 2g = 0} is countable and
open.

Theorem 11.4. Let (G, τ) be a nondiscrete left topological Abelian group,
m be integer such that the mapping x 7−→ mx is continuous and the
subgroup {g ∈ G : m(m − 1)g = 0} is finite. If |m| > 1, then (G, τ) is
ℵ0-irresolvable. If m = −1, then (G, τ) is resolvable.
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Theorem 11.5. Let (G, τ) be a countable regular left topological group
such that the mapping x 7−→ x−1 is continuous. If (G, τ) is non-discrete
and ℵ0-irresolvable, then the subgroup {g ∈ G : 2g = 0} is open.

Theorem 11.6 Let G be a countable group with only finite numbers of
elements of order 2. Assume that G admits a totally bounded group topol-
ogy. Then G can be partitioned into countable many subsets dense in
every non-discrete group topology on G.

Theorem 11.7.Let (G, τ) be a non-discrete ℵ0-irresolvable topological
group. If G is either Abelian or countable, then there exists a P -point in
ω∗.

Comments. The concept of resolvability of topological space was in-
troduced by E.Hewitt in 1944. Theorem 11.1 is from [37] and [42]. It
answers the following question posed by A.V.Arhangel’skǐi and P.Collins
[4]: is every submaximal topological group of first category? The ex-
amples of non-discrete irresolvable topological spaces of second category
under some set-theoretical assumptions are given in [49] and [50].

The start for study resolvability of topological groups was done by
W.W.Comfort and J. van Mill [6]: every non-discrete topological Abelian
group with only finite set of elements of order 2 is resolvable. Theorem
11.3 sharpens this result and was proved in [26]. Theorem 11.2 is from
[17], Theorem 11.4 was proved in [36] by means of equations in βG.

Theorem 1.5 and 1.6 were proved by E.Zelenyuk [60] by means of
automorphisms of local left topological groups. Under MA Zelenyuk con-
structed an irresolvable topological group which is not maximal [55].

For Abelian groups, Theorem 11.7 was proved in [37], the countable
case is reduced to the Abelian case by means of Theorem 11.5.

More on resolvability of topological groups can be found in the surveys
[7], [8] and [30]. For combinatorial aspects of resolvability see [5] and [46].

12. Potential compactness and ultra-rank

A group G is called potentially compact if, for every ultrafilter p on G,
there exists a Hausdorff group topology on G with respect to which p con-
verges to some point of G. Clearly, every group which admits a compact
group topology is potentially compact.

Theorem 12.1.Every potentially compact group is a subgroup of some
compact topological group.

To give a criterion of potential compactness of Abelian group G we
use the Bohr’s compactification G♯ of discrete group G.
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Theorem 12.2.Abelian group G is potentially compact if and only if, for
every element h ∈ G♯, there exists g ∈ G such that < gh >

⋂
G = {e},

where < gh > is the smallest closed subgroup of G containing gh.

Applying this criterion we get the following statements.

Theorem 12.3.A free Abelian group G is potentially compact if and only
if rank G > 1.

Theorem 12.4.An Abelian torsion group G is potentially compact if and
only if it is reduced and the number of its non-trivial p-Sylow subgroups
is finite.

The concept of potential compactness can be generalized via the fol-
lowing cardinal invariant of group.

Let G be a group. A family ℑ of ultrafilters on G is called suitable
if there exists a Hausdorff group topology on G in which all ultrafilters
from ℑ converge. In particular, G admits a compact group topology
if and only if βG is suitable. If G does not admit the compact group
topologies, we denote by inc(G) the minimal cardinality of non-suitable
families of ultrafilters on G.

Let κ be a cardinal and let G be a subgroup of a topological group
H. We say that G is topologically κ-servant in H if, for every family
{hα : α ∈ J} of elements of H such that |J | < κ there exists the family
{gα : α ∈ J} of elements of G such that G

⋂
<< X >> = {e}, where

X = {gαhα : α ∈ J}, << X >> is the smallest closed invariant subgroup
of H containing X.

Theorem 12.5. If G is a topologically κ-servant subgroup of compact
topological group H, then inc (G) ≥ κ.

Theorem 12.6. Assume that a group G is a subgroup of some com-
pact topological group. If G is not topologically κ-servant in the Bohr’s
compactification G♯ of discrete group G, then inc (G) < κ.

Applying Theorem 12.5 and 12.6 we get the following statements.

Theorem 12.7. Every free group of rank > 0 is not potentially compact.

Theorem 12.8. If inc (G) > ℵ0, then G is algebraically compact.

Let (G, τ) be a topological group, ϕ be a set of converging ultrafilters
on G. We say that ϕ determines the topology of G if τ is the strongest
group topology on G in which every ultrafilter from ϕ converges. We
denote by u-rank (G, τ) the minimal cardinality of the sets of ultrafilters
on G which determine the topology of G.
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To calculate the ultra-rank of topological group we use the preodering
on the set of all group topologies on G defined by the rule: τ1 ≤ τ2 if
and only if, for every V ∈ τ1, there exists a finite subset F ⊆ G such
that FV ∈ τ2. It is easy to check that τ1 ≤ τ2 if and only if every
Cauchy ultrafilter in (G, τ2) is a Cauchy ultrafilter in (G, τ1). For every
topological group G there exists the unique maximal topology τ0 such
that τ0 ≤ τ . We say that (G, τ0) is the totally bounded modification of
(G, τ).

Let (G, τ) be a topological group and let (G, τ0) be the totally bounded
modification of (G, τ). We consider Ĝ, the completion of (G, τ0) in
the two-sided group uniformity and extend the identity mapping f :
(G, τ0) −→ (G, τ) to the continuous homomorphism f̂ : Ĝ −→ (Ĝ, τ).
We put Fτ = Ker f̂ and say that the subset X ⊆ Fτ topologically gen-
erates Fτ as the normal divisor of Ĝ if Fτ is the smallest closed invariant
subgroup of Ĝ containing X.

Theorem 12.9. Let (G, τ) be a topological group. Then u-rank (G, τ) is
the minimal cardinality of subsets of Fτ which topologically generate Fτ

as the normal divisor of Ĝ.

Applying Theorem 12.9 we conclude that ultra-rank of every infinite
compact Abelian group G is 22|G|

. On the other hand, ultra-rank of Z

endowed with the topology of finite indices is 1.
Comments. All results of this section are from [19] and [62]. The

preodering on the set of group topologies was defined independently in
[19] and [48].

13. Selected open questions

Question 1. Has every maximal topological group a base of neighborhoods
of the unit consisting of subgroups? Equivalently, is every PS-ultrafilter
on the countable Boolean group strongly summable?

Question 2. Let G be a countable Abelian group, q be a PS-ultrafilter on
G. Is it true that q is either selective or q = a + p for some a ∈ G and
some idempotent p ∈ G∗?

Question 3. Does there exist in ZFC a maximal regular homogeneous
space X such that every non-empty open subset of X is uncountable?

Question 4. Let X be a non-discrete homogeneous space of second cat-
egory. Is X resolvable? ℵ0 - resolvable?

Question 5. Let (G, τ) be a left topological group of uncountable pseudo-
character. Is (G, τ) resolvable? This is so if either cardinality of G is
non-measurable or G is Abelian [37].
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Question 6. Let (G, τ) be a topological group such that every non-empty
open subset of G is uncountable. Is (G, τ) resolvable?

If the answer to this question is positive then, by Theorem 11.7, it
is impossible to construct a non-discrete irresolvable topological group in
ZFC.

Question 7. Let G be an infinite Abelian group, m be integer, |m| > 1.
Assume that the subgroup {g ∈ G : m(m − 1)g = 0} is finite. Is it
possible to decompose G into countably many subsets that are dense in
any topology with continuous shifts and continuous mapping x 7−→ mx.

Question 8 (V. Malykhin). Let (G, τ) be a countable non-discrete irre-
solvable topological group. Is τ̄ finite?

Question 9 (I. Guran). Let G, τ be an extremally disconnected paratopo-
logical group. Is (G, τ) a topological group?

Question 10. Let G be a countable discrete group, q ∈ G∗. Suppose that
the mapping λ∗p : G∗ −→ G∗, λ∗p(x) = px is continuous at the point q for
every p ∈ G∗. Is q a P-point in G∗.

Question 11. Does there exist (in ZFC) a countable group G and p, q ∈
G∗ such that λ∗p is continuous at q?
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[57] Zelenyuk E.G., Finite groups in βN are trivial, Ukr. Nat. Acad. Scien. Inst. Math.,
Preprint 96.3 (1996).

[58] Zelenyuk E.G., Topological groups with only closed nowhere dense subsets, Math.
Notes 64 (1998), 207-211.

[59] Zelenyuk E.G., Extremal ultrafilters and topologies on groups, Mat. Stud. 14
(2000), 121-140.

[60] Zelenyuk E.G., On partition of groups into dense subsets, Topol. Appl. 126
(2000), 327-339.

[61] Zelenyuk E.G., Ultrafilters and topologies on groups, Doctoral Thesis, Kyiv Uni-
versity, 2000.

[62] Zelenyuk E.G., Protasov I.V., Potentially compact Abelian groups, Mat. Sbornik
69 (1991), 299-305.

Contact information

I. V. Protasov Department of Cybernetics, Kyiv National
University, Volodimirska 64, Kyiv 01033,
Ukraine
E-Mail: i.v.protasov@gmail.com

Received by the editors: 09.04.2009
and in final form 02.05.2009.


